skip to main content

Search for: All records

Creators/Authors contains: "Stuivenvolt-Allen, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Availability of water for irrigated crops is driven by climate and policy, as moderated by public priorities and opinions. We explore how climate and water policy interact to influence water availability for cannabis (Cannabis sativa), a newly regulated crop in California, as well as how public discourse frames these interactions. Grower access to surface water covaries with precipitation frequency and oscillates consistently in an energetic 11–17 year wet-dry cycle. Assessing contemporary cannabis water policies against historic streamflow data showed that legal surface water access was most reliable for cannabis growers with small water rights (<600 m3) and limited during relatively dry years. Climate variability either facilitates or limits water access in cycles of 10–15 years—rendering cultivators with larger water rights vulnerable to periods of drought. However, news media coverage excludes growers’ perspectives and rarely mentions climate and weather, while public debate over growers’ irrigation water use presumes illegal diversion. This complicates efforts to improve growers’ legal water access, which are further challenged by climate. To promote a socially, politically, and environmentally viable cannabis industry, water policy should better represent growers’ voices and explicitly address stakeholder controversies as it adapts to this new and legal agricultural water user. 
    more » « less
  4. Abstract

    Periods of water surplus and deficit in Northern California follow a pronounced quasi‐decadal cycle. This cycle is largely driven by the frequency of atmospheric rivers (ARs), affecting the region’s wet and dry periods. Our analyses demonstrate that the quasi‐decadal cycle of AR frequency relies on moisture transport associated with the position and intensity of the Aleutian Low. In observations, the Aleutian Low is shown to covary with tropical Pacific sea surface temperature anomalies. A modeling experiment, which incorporates ocean observations from the equatorial Pacific into the fully coupled climate model, provides support that the quasi‐decadal cycle of the Aleutian Low is forced by the tropical Pacific. Subsequently, the tropical Pacific modulates the wet season moisture transport toward California on decadal time scales, affecting AR frequency. These results provide metrics for improving interannual‐to‐decadal prediction of AR activity, which drives hydrological cycles in Northern California.

    more » « less