- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
03
- Author / Contributor
- Filter by Author / Creator
-
-
Satyanarayanan, Mahadev (3)
-
Sturzinger, Eric (3)
-
Harkes, Jan (2)
-
Goldman, Gil (1)
-
Granevich, Ari (1)
-
Pillai, Padmanabhan (1)
-
Yannay, Netanel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper describes how a system that performs Live Learning can be modified to use radar rather than visible light. The pipelined and iterative machine learning (ML) workflow of this system can operate at low network bandwidths for selective transmission of rare unlabeled events embedded in high-bandwidth real-time sensor data. While radar offers greater range and can overcome the severe signal attenuation experienced by visible light under conditions such as rain or fog, it poses a number of challenges for ML. This paper describes how these challenges can be overcome for Live Learning, and identifies some future directions for research.more » « lessFree, publicly-accessible full text available February 26, 2026
-
Sturzinger, Eric; Satyanarayanan, Mahadev (, IEEE)Drawing on parallels with biological immunity, this paper introduces a new use case for learning at the edge called survival-critical machine learning (SCML). Unlike federated learning, which assumes supervised learning with pre-labeled data, SCML involves semi-supervised learning in streaming settings where labels may need to be obtained at very low network bandwidth and extreme class imbalance. We show that the recently-developed workflow of Live Learning is a good fit for SCML. Starting from a weak bootstrap model, this workflow seamlessly pipelines semi-supervised learning, active learning, and transfer learning, with asynchronous bandwidth-sensitive data transmission for labeling. As improved models evolve at the edge through periodic re-training, the threat detection ability of the SCML system improves. This, in turn, improves the survivability of the host system.more » « lessFree, publicly-accessible full text available December 4, 2025
-
Sturzinger, Eric; Harkes, Jan; Pillai, Padmanabhan; Satyanarayanan, Mahadev (, IEEE Transactions on Emerging Topics in Computing)We introduce survival-critical machine learning (SCML), in which a robot encounters dynamically evolving threats that it recognizes via machine learning (ML), and then neutralizes. We model survivability in SCML, and show the value of the recently developed approach of Live Learning. This edge-based ML technique embodies an iterative human-in-the-loop workflow that concurrently enlarges the training set, trains the next model in a sequence of “best-so-far” models, and performs inferencing for both threat detection and pseudo-labeling. We present experimental results using datasets from the domains of drone surveillance, planetary exploration, and underwater sensing to quantify the effectiveness of Live Learning as a mechanism for SCML.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
