Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy’s superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Metal–organic frameworks (MOFs) have emerged as a highly tunable class of porous materials with wide-ranging applications from gas capture to photocatalysis. Developing these exciting properties to their fullest extent requires a thorough mechanistic understanding of the structure–function relationships. We implement an ultrafast spectroscopic toolset, femtosecond transient absorption and femtosecond stimulated Raman spectroscopy (FSRS), to elucidate the correlated electronic and vibrational dynamics of two isostructural 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)-based MOFs, which manifest drastically different photocatalytic behaviors. Systematic comparisons between the M3+-TBAPy MOFs and bare ligands in various environments reveal the unproductive dimer formation in Al-TBAPy, whereas Sc-TBAPy is dominated by a catalytically active charge-transfer (CT) process. Two ground-state FSRS marker bands of the TBAPy ligand at ∼1267 and 1617 cm−1 probe the chromophore environment at thermal equilibrium. For comparison, the excited-state FSRS of Sc-TBAPy suspended in neutral water unveils a key ∼300 fs twisting motion of the TBAPy peripheral phenyl groups toward planarity, promoting an efficient generation of CT species. This motion also exhibits high sensitivity to solvent environment, which can be a useful probe; we also showed the CT variation for ultrafast dynamics of Sc-TBAPy in the glyphosate aqueous solution. These new insights showcase the power of table-top tunable FSRS methodology to delineate structural dynamics of functional molecular systems in action, including MOFs and other photosensitive “nanomachines.” We expect the uncovered ligand motions (ultrafast planarization) to enable the targeted design of new MOFs with improved CT state characteristics (formation and lifetime) to power applications, including photocatalysis and herbicide removal from waterways.more » « less
- 
            Amidst the rapid expansion of the electric vehicle industry, the need for alternative battery technologies that balance economic viability with sustainability has never been more critical. Here, we report that common lithium salts of Li2CO3 and Li2SO4 are transformed into cathode active mass in Li-ion batteries by ball milling to form a composite with Cu2S. The optimal composite cathode comprising Li2CO3, Li2SO4, and Cu2S, with a practical active mass loading of 12.5-13.0 mg/cm2, demonstrates a reversible capacity of 247 mAh/g based on the total mass of Cu2S and the lithium salts, a specific energy of 716 Wh/kg, and a stable cycle life. This cathode chemistry rivals layered oxide cathodes of Li-ion batteries in energy density but at substantially reduced cost and ecological footprint. Mechanistic investigations reveal that in the composite Li2CO3 serves as the primary active mass, Li2SO4 enhances kinetic properties and reversibility, and Cu2S stabilizes the resulting anionic radicals for reversibility as a binding agent. Our findings pave the way for directly using precursor lithium salts as cathodes for Li-ion batteries to meet the ever-increasing market demands sustainably.more » « less
- 
            Abstract It remains a challenge to design aqueous electrolytes to secure the complete reversibility of zinc metal anodes. The concentrated water‐in‐salt electrolytes, e.g., 30 m ZnCl2, are promising candidates to address the challenges of the Zn metal anode. However, the pure 30 m ZnCl2electrolyte fails to deliver a smooth surface morphology and a practically relevant Coulombic efficiency. Herein, it is reported that a small concentration of vanillin, 5 mg mLwater−1, added to 30 m ZnCl2transforms the reversibility of Zn metal anode by eliminating dendrites, lowering the Hammett acidity, and forming an effective solid electrolyte interphase. The presence of vanillin in the electrolyte enables the Zn metal anode to exhibit a high Coulombic efficiency of 99.34% at a low current density of 0.2 mA cm−2, at which the impacts of the hydrogen evolution reaction are allowed to play out. Using this new electrolyte, a full cell Zn metal battery with an anode/cathode capacity (N/P) ratio of 2:1 demonstrates no capacity fading over 800 cycles.more » « less
- 
            Abstract Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ions become less hydrated and pair up with Cl−, ice‐like water clusters form, and H⋅⋅⋅Cl−bonding strengthens. Surprisingly, this low‐temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH−and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li‐ion battery using LiMn2O4cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
