skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Stynder, Deano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The Pleistocene ungulate communities from the western coastal plains of South Africa's Cape Floristic Region (CFR) are diverse and dominated by grazers, in contrast to the region's Holocene and historical faunas, which are relatively species‐poor and dominated by small‐bodied browsers and mixed feeders. An expansion of grassy habitats is clearly implied by the Pleistocene faunas, but the presence of ruminant grazers that cannot survive the summer dry season typical of the region today suggests other important paleoecological changes. Here we use dental ecometrics to explore the paleoecological implications of the region's Pleistocene faunas. We show that the dental traits (hypsodonty and occlusal topography) of the ungulates that occurred historically in the CFR track annual and summer aridity, and we use these relationships to reconstruct past aridity. Our results indicate that the Pleistocene faunas signal paleoenvironments that were on average less arid than today, including during the summer, consistent with other lines of evidence that suggest a higher water table and expansion of well‐watered habitats. Greater water availability can be explained by lower temperature and reduced evapotranspiration during cooler phases of the Pleistocene, probably coupled with enhanced groundwater recharge due to increased winter precipitation.

    more » « less
  2. Abstract

    Despite advances in our understanding of the geographic and temporal scope of the Paleolithic record, we know remarkably little about the evolutionary and ecological consequences of changes in human behavior. Recent inquiries suggest that human evolution reflects a long history of interconnections between the behavior of humans and their surrounding ecosystems (e.g., niche construction). Developing expectations to identify such phenomena is remarkably difficult because it requires understanding the multi‐generational impacts of changes in behavior. These long‐term dynamics require insights into the emergent phenomena that alter selective pressures over longer time periods which are not possible to observe, and are also not intuitive based on observations derived from ethnographic time scales. Generative models show promise for probing these potentially unexpected consequences of human‐environment interaction. Changes in the uses of landscapes may have long term implications for the environments that hominins occupied. We explore other potential proxies of behavior and examine how modeling may provide expectations for a variety of phenomena.

    more » « less