skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Su, Jiafei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Comprehensive treatment of indoor contaminants such as volatile organic compounds (VOCs) and fine particulate matter (PM2.5) using transition metal oxide catalysts or functional fibrous filters has gained substantial attention recently. However, coupling VOC oxidation catalysts into high‐performance filter systems remains a challenge. Herein, an overall solution to strongly bind manganese dioxide (MnO2) nanocrystals onto polypropylene (PP) nonwoven fabrics is provided. For the first time, uniform heterogeneous nucleation and growth of MnO2onto PP nonwoven fabrics using intermediate inorganic nucleation films, including Al2O3, TiO2, and ZnO, formed conformally on the fabrics via atomic layer deposition (ALD) are demonstrated. How different ALD thin films influence the crystallinity, morphology, surface area, and surface oxygen species of the MnO2grown ALD‐coated PP fibers is further investigated. In addition to uniformity and integrity, ZnO thin films give rise to MnO2crystals with the largest fraction of available surface oxygen, enabling 99.5% catalytic oxidation of formaldehyde within 60 min. Moreover, the metal oxide filters provide excellent PM removal efficiencies (ePM), achievingePM2.590% andePM1098%, respectively, making the approach an outstanding method to produce fully dual‐functional filtration media.

     
    more » « less