Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the past decade, differential privacy has seen remarkable success as a rigorous and practical formalization of data privacy. This privacy definition and its divergence based relaxations, however, have several acknowledged weaknesses, either in handling composition of private algorithms or in analysing important primitives like privacy amplification by subsampling. Inspired by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of differential privacy, which we term ‘f-differential privacy’ (f-DP). This notion of privacy has a number of appealing properties and, in particular, avoids difficulties associated with divergence based relaxations. First, f-DP faithfully preserves the hypothesis testing interpretation of differential privacy, thereby making the privacy guarantees easily interpretable. In addition, f-DP allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide a powerful technique to import existing results proven for the original differential privacy definition to f-DP and, as an application of this technique, obtain a simple and easy-to-interpret theorem of privacy amplification by subsampling for f-DP. In addition to the above findings, we introduce a canonical single-parameter family of privacy notions within the f-DP class that is referred to as ‘Gaussian differential privacy’ (GDP), defined based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal privacy definition among the family of f-DP guarantees due to a central limit theorem for differential privacy that we prove. More precisely, the privacy guarantees of any hypothesis testing based definition of privacy (including the original differential privacy definition) converges to GDP in the limit under composition. We also prove a Berry–Esseen style version of the central limit theorem, which gives a computationally inexpensive tool for tractably analysing the exact composition of private algorithms. Taken together, this collection of attractive properties render f-DP a mathematically coherent, analytically tractable and versatile framework for private data analysis. Finally, we demonstrate the use of the tools we develop by giving an improved analysis of the privacy guarantees of noisy stochastic gradient descent.
-
Abstract Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-) and Polyak’s heavy-ball method—we study an alternative limiting process that yields
high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG- and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG- but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG- minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG- for smooth convex functions.