skip to main content


Search for: All records

Creators/Authors contains: "Suel, Torsten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An inverted index is the basic data structure used in most current large-scale information retrieval systems. It can be modeled as a collection of sorted sequences of integers. Many compression techniques for inverted indexes have been studied in the past, with some of them reaching tremendous decompression speeds through the use of SIMD instructions available on modern CPUs. While there has been some work on query processing algorithms for Graphics Processing Units (GPUs), little of it has focused on how to efficiently access compressed index structures, and we see some potential for significant improvements in decompression speed. In this paper, we describe and implement two encoding schemes for index decompression on GPU architectures. Their format and decoding algorithm is adapted from existing CPU-based compression methods to exploit the execution model and memory hierarchy offered by GPUs. We show that our solutions, GPU-BP and GPU-VByte, achieve significant speedups over their already carefully optimized CPU counterparts. 
    more » « less
  2. Instance retrieval systems are widely used in applications such as robot navigation, medical diagnosis, and augmented reality. Blippar is a company that creates compelling augmented reality experiences or provides you with the tools to build your own. In this paper we focus on one of the company's augmented-reality applications, with which users are able to point their phone cameras at different objects in order to receive information about the objects in real time. In this paper, we provide what we believe to be the first study of forward index compression techniques for such instance retrieval systems. First, we perform an analysis of real-world data from a large-scale commercial instance retrieval system, run by Blippar focusing on augmented reality. Then we propose an entropy-based lossless compression strategy. Experiments show that our proposed Huffman-based approach outperforms a variety of other compression techniques, while also increasing overall system efficiency slightly. 
    more » « less