- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Sukochev, Fedor (3)
-
Zanin, Dmitriy (2)
-
Frank, Rupert (1)
-
Frank, Rupert L (1)
-
Junge, Marius (1)
-
Scheckter, Thomas Tzvi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2025
-
Frank, Rupert; Sukochev, Fedor; Zanin, Dmitriy (, Transactions of the American Mathematical Society)We obtain Weyl type asymptotics for the quantised derivative \dj \mkern 1muf of a function f f from the homgeneous Sobolev space W ˙ d 1 ( R d ) \dot {W}^1_d(\mathbb {R}^d) on R d . \mathbb {R}^d. The asymptotic coefficient ‖ ∇ f ‖ L d ( R d ) \|\nabla f\|_{L_d(\mathbb R^d)} is equivalent to the norm of \dj \mkern 1muf in the principal ideal L d , ∞ , \mathcal {L}_{d,\infty }, thus, providing a non-asymptotic, uniform bound on the spectrum of \dj \mkern 1muf. Our methods are based on the C ∗ C^{\ast } -algebraic notion of the principal symbol mapping on R d \mathbb {R}^d , as developed recently by the last two authors and collaborators.more » « less
-
Junge, Marius; Scheckter, Thomas Tzvi; Sukochev, Fedor (, Journal of Functional Analysis)null (Ed.)