skip to main content


Search for: All records

Creators/Authors contains: "Sullivan, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a search for luminous long-duration ambiguous nuclear transients (ANTs) similar to the unprecedented discovery of the extreme ambiguous event AT2021lwx with a $\gt 150$ d rise time and luminosity $10^{45.7}$ erg s$^{-1}$. We use the Lasair transient broker to search Zwicky Transient Facility (ZTF) data for transients lasting more than one year and exhibiting smooth declines. Our search returns 59 events, 7 of which we classify as ANTs assumed to be driven by accretion onto supermassive black holes. We propose the remaining 52 are stochastic variability from regular supermassive black hole accretion rather than distinct transients. We supplement the seven ANTs with three nuclear transients in ZTF that fail the light curve selection but have clear single flares and spectra that do not resemble typical active galactic nucleus. All of these 11 ANTs have a mid-infrared flare from an assumed dust echo, implying the ubiquity of dust around the black holes giving rise to ANTs. No events are more luminous than AT2021lwx, but one (ZTF19aamrjar) has twice the duration and a higher integrated energy release. On the other extreme, ZTF20abodaps reaches a luminosity close to AT2021lwx with a rise time $\lt 20$ d and that fades smoothly in $\gt 600$ d. We define a portion of rise-time versus flare amplitude space that selects ANTs with $\sim 50$ per cent purity against variable AGNs. We calculate a volumetric rate of $\gtrsim 3\times 10^{-11}$ Mpc$^{-1}$ yr$^{-1}$, consistent with the events being caused by tidal disruptions of intermediate and high-mass stars.

     
    more » « less
  2. ABSTRACT

    Using 1533 type Ia supernovae (SNe Ia) from the 5-yr sample of the Dark Energy Survey (DES), we investigate the relationship between the projected galactocentric separation of the SNe and their host galaxies and their light curves and standardization. We show, for the first time, that the difference in SN Ia post-standardization brightnesses between high- and low-mass hosts reduces from $0.078\pm 0.011$ mag in the full sample to $0.036 \pm 0.018$ mag for SNe Ia located in the outer regions of their host galaxies, while increasing to $0.100 \pm 0.014$ mag for SNe in the inner regions. The difference in the size of the mass step between inner and outer regions is $0.064\pm 0.023$ mag. In these inner regions, the step can be reduced (but not removed) using a model where the $R_V$ of dust along the line of sight to the SN changes as a function of galaxy properties. We investigate the remaining difference using the distributions of the SN Ia stretch parameter to test the inferred age of SN progenitors. Comparing red (older) environments only, outer regions have a higher proportion of high-stretch SNe and a more homogeneous stretch distribution. However, this effect cannot explain the reduction in significance of any Hubble residual step in outer regions. We conclude that the standardized distances of SNe Ia located in the outer regions of galaxies are less affected by their global host galaxy properties than those in the inner regions.

     
    more » « less
  3. ABSTRACT

    The weak gravitational lensing magnification of Type Ia supernovae (SNe Ia) is sensitive to the matter power spectrum on scales $k\gt 1 h$ Mpc$^{-1}$, making it unwise to interpret SNe Ia lensing in terms of power on linear scales. We compute the probability density function of SNe Ia magnification as a function of standard cosmological parameters, plus an empirical parameter $A_{\rm mod}$ which describes the suppression or enhancement of matter power on non-linear scales compared to a cold dark matter only model. While baryons are expected to enhance power on the scales relevant to SN Ia lensing, other physics such as neutrino masses or non-standard dark matter may suppress power. Using the Dark Energy Survey Year-5 sample, we find $A_{\rm mod} = 0.77^{+0.69}_{-0.40}$ (68 per cent credible interval around the median). Although the median is consistent with unity there are hints of power suppression, with $A_{\rm mod} \lt 1.09$ at 68 per cent credibility.

     
    more » « less
  4. ABSTRACT

    Gravitational lensing magnification of Type Ia supernovae (SNe Ia) allows information to be obtained about the distribution of matter on small scales. In this paper, we derive limits on the fraction $\alpha$ of the total matter density in compact objects (which comprise stars, stellar remnants, small stellar groupings, and primordial black holes) of mass M > 0.03 ${\rm M}_{\odot }$ over cosmological distances. Using 1532 SNe Ia from the Dark Energy Survey Year 5 sample (DES-SN5YR) combined with a Bayesian prior for the absolute magnitude M, we obtain α < 0.12 at the 95 per cent confidence level after marginalization over cosmological parameters, lensing due to large-scale structure, and intrinsic non-Gaussianity. Similar results are obtained using priors from the cosmic microwave background, baryon acoustic oscillations, and galaxy weak lensing, indicating our results do not depend on the background cosmology. We argue our constraints are likely to be conservative (in the sense of the values we quote being higher than the truth), but discuss scenarios in which they could be weakened by systematics of the order of $\Delta \alpha \sim 0.04$.

     
    more » « less
  5. ABSTRACT

    Type Ia Supernovae (SNe Ia) are a critical tool in measuring the accelerating expansion of the universe. Recent efforts to improve these standard candles have focused on incorporating the effects of dust on distance measurements with SNe Ia. In this paper, we use the state-of-the-art Dark Energy Survey 5 year sample to evaluate two different families of dust models: empirical extinction models derived from SNe Ia data and physical attenuation models from the spectra of galaxies. In this work, we use realistic simulations of SNe Ia to forward-model different models of dust and compare summary statistics in order to test different assumptions and impacts on SNe Ia data. Among the SNe Ia-derived models, we find that a logistic function of the total-to-selective extinction $R_V$ best recreates the correlations between supernova distance measurements and host galaxy properties, though an additional 0.02 mag of grey scatter is needed to fully explain the scatter in SNIa brightness in all cases. These empirically derived extinction distributions are highly incompatible with the physical attenuation models from galactic spectral measurements. From these results, we conclude that SNe Ia must either preferentially select extreme ends of galactic dust distributions, or that the characterization of dust along the SNe Ia line-of-sight is incompatible with that of galactic dust distributions.

     
    more » « less
  6. ABSTRACT

    Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $2{,}298$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.

     
    more » « less
  7. Abstract

    We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters areσΩM,stat+sysΛCDM=0.017 in a flat ΛCDM model, and(σΩM,σw)stat+syswCDM= (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.

     
    more » « less
  8. The stabilization of the threshold switching characteristics of memristive NbOx is examined as a function of sample growth and device characteristics. Sub-stoichiometric Nb2O5 was deposited via magnetron sputtering and patterned in nanoscale (50×50–170×170nm2) W/Ir/NbOx/TiN devices and microscale (2×2–15×15μm2) crossbar Au/Ru/NbOx/Pt devices. Annealing the nanoscale devices at 700 °C removed the need for electroforming the devices. The smallest nanoscale devices showed a large asymmetry in the IV curves for positive and negative bias that switched to symmetric behavior for the larger and microscale devices. Electroforming the microscale crossbar devices created conducting NbO2 filaments with symmetric IV curves whose behavior did not change as the device area increased. The smallest devices showed the largest threshold voltages and most stable threshold switching. As the nanoscale device area increased, the resistance of the devices scaled with the area as R∝A−1, indicating a crystallized bulk NbO2 device. When the nanoscale device size was comparable to the size of the filaments, the annealed nanoscale devices showed similar electrical responses as the electroformed microscale crossbar devices, indicating filament-like behavior in even annealed devices without electroforming. Finally, the addition of up to 1.8% Ti dopant into the films did not improve or stabilize the threshold switching in the microscale crossbar devices.

     
    more » « less
  9. Abstract

    We presentgrizphotometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImgand 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z) range ever covered by a single SN survey (0.1 <z< 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImgforced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YRand doi:10.5281/zenodo.12720777.

     
    more » « less
  10. ABSTRACT

    We present a precise measurement of cosmological time dilation using the light curves of 1504 Type Ia supernovae from the Dark Energy Survey spanning a redshift range $0.1\lesssim z\lesssim 1.2$. We find that the width of supernova light curves is proportional to $(1+z)$, as expected for time dilation due to the expansion of the Universe. Assuming Type Ia supernovae light curves are emitted with a consistent duration $\Delta t_{\rm em}$, and parametrizing the observed duration as $\Delta t_{\rm obs}=\Delta t_{\rm em}(1+z)^b$, we fit for the form of time dilation using two methods. First, we find that a power of $b \approx 1$ minimizes the flux scatter in stacked subsamples of light curves across different redshifts. Secondly, we fit each target supernova to a stacked light curve (stacking all supernovae with observed bandpasses matching that of the target light curve) and find $b=1.003\pm 0.005$ (stat) $\pm \, 0.010$ (sys). Thanks to the large number of supernovae and large redshift-range of the sample, this analysis gives the most precise measurement of cosmological time dilation to date, ruling out any non-time-dilating cosmological models at very high significance.

     
    more » « less