- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Sun, Hanlin (2)
-
Bianconi, Ginestra (1)
-
Christensen, Kim (1)
-
Dong, Gaogao (1)
-
Fan, Jingfang (1)
-
Gao, Jianxi (1)
-
Havlin, Shlomo (1)
-
Hu, Xinqi (1)
-
Kurths, Jürgen (1)
-
Lambiotte, Renaud (1)
-
Meng, Xiangyi (1)
-
Radicchi, Filippo (1)
-
Tian, Zihao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quantum networks (QNs) exhibit stronger connectivity than predicted by classical percolation, yet the origin of this phenomenon remains unexplored. We apply a statistical physics model—concurrence percolation—to uncover the origin of stronger connectivity on hierarchical scale-free networks, the (U,V) flowers. These networks allow full analytical control over path connectivity through two adjustable path-length parameters, ≤V. This precise control enables us to determine critical exponents well beyond current simulation limits, revealing that classical and concurrence percolations, while both satisfying the hyperscaling relation, fall into distinct universality classes. This distinction arises from how they “superpose” parallel, nonshortest path contributions into overall connectivity. Concurrence percolation, unlike its classical counterpart, is sensitive to nonshortest paths and shows higher resilience to detours as these paths lengthen. This enhanced resilience is also observed in real-world hierarchical, scale-free internet networks. Our findings highlight a crucial principle for QN design: When nonshortest paths are abundant, they notably enhance QN connectivity beyond what is achievable with classical percolation.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Sun, Hanlin; Radicchi, Filippo; Kurths, Jürgen; Bianconi, Ginestra (, Nature Communications)Abstract Percolation establishes the connectivity of complex networks and is one of the most fundamental critical phenomena for the study of complex systems. On simple networks, percolation displays a second-order phase transition; on multiplex networks, the percolation transition can become discontinuous. However, little is known about percolation in networks with higher-order interactions. Here, we show that percolation can be turned into a fully fledged dynamical process when higher-order interactions are taken into account. By introducing signed triadic interactions, in which a node can regulate the interactions between two other nodes, we define triadic percolation. We uncover that in this paradigmatic model the connectivity of the network changes in time and that the order parameter undergoes a period doubling and a route to chaos. We provide a general theory for triadic percolation which accurately predicts the full phase diagram on random graphs as confirmed by extensive numerical simulations. We find that triadic percolation on real network topologies reveals a similar phenomenology. These results radically change our understanding of percolation and may be used to study complex systems in which the functional connectivity is changing in time dynamically and in a non-trivial way, such as in neural and climate networks.more » « less
An official website of the United States government
