skip to main content


Search for: All records

Creators/Authors contains: "Sun, Hua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users’ local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users’ trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates from the users to the server in the two rounds of the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as “uncoded groupwise keys,” has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users, where S is a defined system parameter. The capacity region for the information theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users (which is another system parameter). In this paper we fully characterize the capacity region for this problem by matching a new converse bound and an achievable scheme. Experimental results over the Tencent Cloud show the improvement on the model aggregation time compared to the original secure aggregation scheme. 
    more » « less
  3. Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server. The “secure” nature of such aggregation consists of the fact that no information about the local users’ data must be leaked to the server except the aggregated local models. In order to guarantee security, some keys may be shared among the users (this is referred to as the key sharing phase). After the key sharing phase, each user masks its trained model which is then sent to the server (this is referred to as the model aggregation phase). This paper follows the information theoretic secure aggregation problem originally formulated by Zhao and Sun, with the objective to characterize the minimum communication cost from the K users in the model aggregation phase. Due to user dropouts, which are common in real systems, the server may not receive all messages from the users. A secure aggregation scheme should tolerate the dropouts of at most K – U users, where U is a system parameter. The optimal communication cost is characterized by Zhao and Sun, but with the assumption that the keys stored by the users could be any random variables with arbitrary dependency. On the motivation that uncoded groupwise keys are more convenient to be shared and could be used in large range of applications besides federated learning, in this paper we add one constraint into the above problem, namely, that the key variables are mutually independent and each key is shared by a group of S users, where S is another system parameter. To the best of our knowledge, all existing secure aggregation schemes (with information theoretic security or computational security) assign coded keys to the users. We show that if S > K–U, a new secure aggregation scheme with uncoded groupwise keys can achieve the same optimal communication cost as the best scheme with coded keys; if S ≤ K – U, uncoded groupwise key sharing is strictly sub-optimal. Finally, we also implement our proposed secure aggregation scheme into Amazon EC2, which are then compared with the existing secure aggregation schemes with offline key sharing. 
    more » « less