skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sun, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microplastics are commonly recognized as environmental and biotic contaminants. The prevalent presence of microplastics in aquatic settings raises concerns about plastic pollution. Therefore, it is critical to develop methods that can eliminate these microplastics with low cost and high effectiveness. This review concisely provides an overview of various methods and technologies for removing microplastics from wastewater and marine environments. Dynamic membranes and membrane bioreactors are effective in removing microplastics from wastewater. Chemical methods such as coagulation and sedimentation, electrocoagulation, and sol-gel reactions can also be used for microplastic removal. Biological methods such as the use of microorganisms and fungi are also effective for microplastic degradation. Advanced filtration technologies like a combination of membrane bioreactor and activated sludge method show high microplastic removal efficiency. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available March 1, 2024
  7. A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024