Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis.more » « lessFree, publicly-accessible full text available October 28, 2025
-
Free, publicly-accessible full text available August 19, 2025
-
The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep. Validation results in comparison with the gold standard (i.e., polysomnography) (n=849) demonstrate that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM), detects sleep apnea (AUROC = 0.88), and measures the patient's Apnea-Hypopnea Index (ICC=0.95; 95% CI = [0.93, 0.97]). Notably, the model exhibits equitable performance across race, sex, and age. Moreover, the model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders. These findings not only hold promise for clinical practice and interventional trials but also underscore the significance of sleep as a fundamental component in understanding and managing various diseases.more » « less
-
Abstract Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)‐based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi‐automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user‐specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid‐Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data‐driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation.more » « less
-
Microplastics are commonly recognized as environmental and biotic contaminants. The prevalent presence of microplastics in aquatic settings raises concerns about plastic pollution. Therefore, it is critical to develop methods that can eliminate these microplastics with low cost and high effectiveness. This review concisely provides an overview of various methods and technologies for removing microplastics from wastewater and marine environments. Dynamic membranes and membrane bioreactors are effective in removing microplastics from wastewater. Chemical methods such as coagulation and sedimentation, electrocoagulation, and sol-gel reactions can also be used for microplastic removal. Biological methods such as the use of microorganisms and fungi are also effective for microplastic degradation. Advanced filtration technologies like a combination of membrane bioreactor and activated sludge method show high microplastic removal efficiency.more » « less
-
Algorithmic fairness in the context of personalized recommendation presents significantly different challenges to those commonly encountered in classification tasks. Researchers studying classification have generally considered fairness to be a matter of achieving equality of outcomes between a protected and unprotected group, and built algorithmic interventions on this basis. We argue that fairness in real-world application settings in general, and especially in the context of personalized recommendation, is much more complex and multi-faceted, requiring a more general approach. We propose a model to formalize multistakeholder fairness in recommender systems as a two stage social choice problem. In particular, we express recommendation fairness as a novel combination of an allocation and an aggregation problem, which integrate both fairness concerns and personalized recommendation provisions, and derive new recommendation techniques based on this formulation. Simulations demonstrate the ability of the framework to integrate multiple fairness concerns in a dynamic waymore » « less