skip to main content


Search for: All records

Creators/Authors contains: "Sun, Tianhaozhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ground shaking caused by earthquakes is accompanied by seafloor and sub‐seafloor formation fluid pressure variations in offshore areas, but there have been few collocated observations of these signals. In this work, we report seismic and high‐sampling‐rate fluid pressure records of the 2021 Mw 8.2 Alaska earthquake by the Ocean Networks Canada (ONC) NEPTUNE observatory at an epicentral distance of ∼2,200 km in the northeast Pacific Ocean. The system comprises observatory nodes in various tectonic environments, with each node including buried broadband seismometers, seafloor pressure sensors, and, at two nodes, borehole pressure sensors. Seismic and tsunami waveforms of the Mw 8.2 earthquake were documented in detail. Seismic seafloor pressure variations (Psf) were dominated by Rayleigh waves of periods between 5 and 50 s, with peak amplitudes of 3–4 kPa at most sites. Waveform similarity and the linear scaling betweenPsfand vertical ground acceleration indicate forced acceleration of the water column being dominant in governingPsfduring long‐period surface‐wave arrivals, with an additional component of elastic oscillation occurring at higher frequencies (>0.1 Hz) causing extra pressure signals. Analysis of formation pressure variations due to various types of ocean loading of distinctly different frequencies (e.g., tides, tsunami, and infragravity waves) shows stable one‐dimensional vertical loading efficiencies that depend on lithology at each borehole site, with loading response being strongly influenced by the presence of free gas at shallow depths within the Cascadia accretionary prism. Inter‐site comparisons of seismic and seafloor pressure waveforms demonstrate a key role of sediment thickness in the amplification of surface wave amplitudes.

     
    more » « less
  2. Abstract

    The Cascadia subduction megathrust off the Pacific Northwest follows an “end member” seismogenic behavior, producing large (up to moment magnitude 9) but infrequent (every several hundred years) earthquakes and tsunamis. Crustal deformation associated with the ongoing plate convergence has been characterized by land‐based geodetic observations, but the state of locking across the full breadth of the seismogenic fault is poorly constrained. We report results of offshore monitoring of borehole fluid pressure, as a proxy for formation volumetric strain, at a site ∼20 km landward of the Cascadia subduction deformation front since 2010. The multi‐depth pressure records were plagued by hydrologic noise, but noise at the deepest monitoring level (303 m sub‐seafloor) abated in 2015. Subsequently, including at the times of regional large earthquakes that caused significant dynamic stressing, no persistent pressure transients are present above a threshold of 0.08 kPa imposed by unremovable oceanographic signals, corresponding to a strain detection limit of ∼16 nanostrain. Simple dislocation models using local megathrust geometry suggest a resolvable slip of <1 cm along a trench‐normal corridor beneath the borehole for a range of slip‐patch dimensions. A large slip patch can be well resolved even at considerable along‐strike distances from the borehole; for instance, ∼10 cm slip is detectable over a 200‐km strike range for a slip‐patch radius of ∼50 km. This high sensitivity for detecting slip, along with the lack of observed events, stands in stark contrast to observations at other subduction zones, and suggests that the Northern Cascadia megathrust is most likely fully locked.

     
    more » « less
  3. Abstract

    Fractures and faults in igneous oceanic crust affect hydrothermal circulation and hydration of the oceanic plates. Seismic observations have provided information about lithospheric fabrics, but direct measurements of oceanic crust’s elastic properties were not made. We report determinations of compressibility of the upper igneous crust (of 3.6 Ma) of the Juan de Fuca plate, using observed formation fluid pressure oscillations in sealed boreholes associated with passing surface waves from distant earthquakes. We determine an azimuthal variation of formation‐matrix compressibility by a factor of ∼5, with the crust being most compressible in the plate‐spreading direction across the structural fabric inherited from crustal creation. This is equivalent to a seismic compressional wave speed anisotropy of ∼50%–60%, much greater than that of standard seismic measurements (typically <20%). This likely reflects a previously unresolved degree of fracturing of the uppermost oceanic crust, consistent with existing observations that suggest a high degree of hydraulic permeability anisotropy.

     
    more » « less