skip to main content

Search for: All records

Creators/Authors contains: "Sun, Xianhu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 28, 2023
  2. Despite the well-known tendency for many alloys to undergo ordering transformations, the microscopic mechanism of ordering and its dependence on alloy composition remains largely unknown. Using the example of Pt 85 Fe 15 and Pt 65 Fe 35 alloy nanoparticles (NPs), herein we demonstrate the composition-dependent ordering processes on the single-particle level, where the nanoscale size effect allows for close interplay between surface and bulk in controlling the phase evolution. Using in situ electron microscopy observations, we show that the ordering transformation in Pt 85 Fe 15 NPs during vacuum annealing occurs via the surface nucleation and growth of L1 2 -ordered Pt 3 Fe domains that propagate into the bulk, followed by the self-sacrifice transformation of the surface region of the L1 2 Pt 3 Fe into a Pt skin. By contrast, the ordering in Pt 65 Fe 35 NPs proceeds via an interface mechanism by which the rapid formation of an L1 0 PtFe skin occurs on the NPs and the transformation boundary moves inward along with outward Pt diffusion. Although both the “nucleation and growth” and the “interface” mechanisms result in a core–shell configuration with a thin Pt-rich skin, Pt 85 Fe 15 NPs have an L1more »2 Pt 3 Fe core, whereas Pt 65 Fe 35 NPs are composed of an L1 0 PtFe core. Using atomistic modeling, we identify the composition-dependent vacancy-assisted counterdiffusion of Pt and Fe atoms between the surface and core regions in controlling the ordering transformation pathway. This vacancy-assisted diffusion is further demonstrated by oxygen annealing, for which the selective oxidation of Fe results in a large number of Fe vacancies and thereby greatly accelerates the transformation kinetics.« less
    Free, publicly-accessible full text available April 5, 2023