skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Yujie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, ZnIn2S4 (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (EF), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co_In, Yb_i, Tc_Zn, Au_S, La_i, Eu_i, Au_i, Ta_In, Hf_In, Zr_In, and Ni_Zn lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation. 
    more » « less
    Free, publicly-accessible full text available October 28, 2025
  2. Free, publicly-accessible full text available August 1, 2025
  3. Abstract The burgeoning field of semiconductor‐mediated organic conversion is of paramount significance, with zinc indium sulfide (ZnIn2S4) emerging as a standout candidate owing to its benign nature, optimal bandgap, extensive light absorption spectrum, remarkable physicochemical properties, and straightforward synthesis. This review examines the latest breakthroughs and the trajectory of ZnIn2S4‐based photocatalysts in the realm of selective organic transformation. We start with a distinct overview of the intrinsic physical attributes of ZnIn2S4and the underlying mechanisms driving its efficacy in photocatalytic organic transformations. Subsequently, the preparation methods of ZnIn2S4are summarized. The main focus is the state‐of‐the‐art photocatalytic application of various ZnIn2S4‐based photocatalysts, such as redox reactions, the construction of C−C, C−S and S−S bonds, and the cleavage of C−O, C−C, and C=C bonds. In the conclusion part, we provide our perspectives on the prospective advancements and the remaining challenges that lie ahead in the optimization of ZnIn2S4‐based photocatalysts, with the ultimate goal of enhancing their efficacy for a diverse array of photosynthetic applications. It is anticipated to inspire the strategic engineering of ZnIn2S4and other semiconductor‐based photocatalysts for various artificial photosynthesis reactions. 
    more » « less
    Free, publicly-accessible full text available July 8, 2025
  4. Free, publicly-accessible full text available October 1, 2025
  5. Abstract Conventional organic photocatalysis typically relies on ultraviolet and short‐wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co‐catalysts, leading to reduced quantum efficiency and side reactions. To address this issue, we developed novel organic two‐photon‐absorbing (TPA) photosensitizers capable of functioning under deep red and near‐infrared light irradiation. Three model reactions including cyclization, Sonogashira Csp2−Cspcross‐coupling, and Csp2−N cross‐coupling reactions were selected to compare the performance of the new photosensitizers under both blue (427 nm) and deep red (660 nm) light irradiation. The obtained results unambiguously prove that for reactions involving blue light‐absorbing reactants, products, and/or co‐catalysts, deep red light source resulted in better performance than blue light when utilizing our TPA photosensitizers. This work highlights the potential of our metal‐free TPA photosensitizers as a sustainable and effective solution to mitigate the competing light absorption issue in photocatalysis, not only expanding the scope of organic photocatalysts but also reducing reliance on expensive Ru/Ir/Os‐based photosensitizers. 
    more » « less
  6. Under super-resolution imaging of probe PCV-1, we developed a new analytical assay named organelle ratiometric probing (ORP), which has successfully achieved quantitative analysis and efficient assessment of the viability of individual cells. 
    more » « less