Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity.more » « less
-
Phishing is a ubiquitous and increasingly sophisticated online threat. To evade mitigations, phishers try to ""cloak"" malicious content from defenders to delay their appearance on blacklists, while still presenting the phishing payload to victims. This cat-and-mouse game is variable and fast-moving, with many distinct cloaking methods---we construct a dataset identifying 2,933 real-world phishing kits that implement cloaking mechanisms. These kits use information from the host, browser, and HTTP request to classify traffic as either anti-phishing entity or potential victim and change their behavior accordingly. In this work we present SPARTACUS, a technique that subverts the phishing status quo by disguising user traffic as anti-phishing entities. These intentional false positives trigger cloaking behavior in phishing kits, thus hiding the malicious payload and protecting the user without disrupting benign sites. To evaluate the effectiveness of this approach, we deployed SPARTACUS as a browser extension from November 2020 to July 2021. During that time, SPARTACUS browsers visited 160,728 reported phishing URLs in the wild. Of these, SPARTACUS protected against 132,274 sites (82.3%). The phishing kits which showed malicious content to SPARTACUS typically did so due to ineffective cloaking---the majority (98.4%) of the remainder were detected by conventional anti-phishing systems such as Google Safe Browsing or VirusTotal, and would be blacklisted regardless. We further evaluate SPARTACUS against benign websites sampled from the Alexa Top One Million List for impacts on latency, accessibility, layout, and CPU overhead, finding minimal performance penalties and no loss in functionality.more » « less
An official website of the United States government
