Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water activation, oxidatively to produce surface-bound hydroxide (OH*) or reductively to form surface-bound hydrogen (H*) atoms, is ubiquitous in electrocatalysis. We report the impact of cations on the kinetics of the OH* and H* formation from water on single-crystal Pt(111) in alkaline using fast-scan-rate cyclic voltammetry. Isolating the dependence of the electro-adsorption kinetics on pH and ionic strength led to the observation that ion concentrations affected the OH* formation kinetics more strongly than pH. The H* formation exhibited similar behavior, even though the OH* formation rate was observed to be faster by >10x. We attributed the observed ion concentration effect to cations, given that switching cations (from Na+to Li+) had a bigger impact on the H* and OH* formation rates than switching pH (effectively changing OH–to F–). We hypothesize the cations softened and allowed the interfacial water layer to more easily reorganize. This result suggests that interfacial water disruption should benefit both H* and OH* electro-adsorption kinetics in alkaline electrolytes.more » « less
-
Abstract The electrochemical CO2 reduction reaction (CO2RR) has gathered widespread attention in the past decade as an enabling component to energy and fuel sustainability. Copper (Cu) is one of the few electrocatalysts that can convert CO2 to higher-order hydrocarbons. We report the CO2RR on polycrystalline Cu from 5 °C to 45 °C as a function of electrochemical potential. Our result shows that selectivity shifts toward CH4 at low temperature and H2 at high temperature at the potential values between −0.95 V and −1.25 V versus reversible hydrogen electrode (RHE). We analyze the activation energy for each product and discuss the possible underlying mechanism based on their potential dependence. The activation barrier of CH4 empirically obeys the Butler–Volmer equation, while C2H4 and CO show a non-trivial trend. Our result suggests that the CH4 production proceeds via a classical electrochemical pathway, likely the proton-coupled electron transfer of surface-saturated COad, while C2H4 is limited by a more complex process, likely involving surface adsorbates. Our measurement is consistent with the view that the adsorbate–adsorbate interaction dictates the C2+ selectivity.more » « less
An official website of the United States government
