skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Suresh, Akshay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radio searches for extraterrestrial intelligence have mainly targeted the discovery of narrowband continuous-wave beacons and artificially dispersed broadband bursts. Periodic pulse trains, in comparison to the above technosignature morphologies, offer an energetically efficient means of interstellar transmission. A rotating beacon at the Galactic Center (GC), in particular, would be highly advantageous for galaxy-wide communications. Here, we presentblipss, a CPU-based open-source software that uses a fast folding algorithm (FFA) to uncover channel-wide periodic signals in radio dynamic spectra. Runningblipsson 4.5 hr of 4–8 GHz data gathered with the Robert C. Byrd Green Bank Telescope, we searched the central 6 of our galaxy for kHz-wide signals with periods between 11 and 100 s and duty cycles (δ) between 10% and 50%. Our searches, to our knowledge, constitute the first FFA exploration for periodic alien technosignatures. We report a nondetection of channel-wide periodic signals in our data. Thus, we constrain the abundance of 4–8 GHz extraterrestrial transmitters of kHz-wide periodic pulsed signals to fewer than one in about 600,000 stars at the GC above a 7σequivalent isotropic radiated power of ≈2 × 1018W atδ≃ 10%. From an astrophysics standpoint,blipss, with its utilization of a per-channel FFA, can enable the discovery of signals with exotic radio frequency sweeps departing from the standard cold plasma dispersion law. 
    more » « less
  2. Abstract The Galactic Center (GC), with its high density of massive stars, is a promising target for radio transient searches. In particular, the discovery and timing of a pulsar orbiting the central supermassive black hole (SMBH) of our galaxy will enable stringent strong-field tests of gravity and accurate measurements of SMBH properties. We performed multiepoch 4–8 GHz observations of the inner ≈15 pc of our galaxy using the Robert C. Byrd Green Bank Telescope in 2019 August–September. Our investigations constitute the most sensitive 4–8 GHz GC pulsar survey conducted to date, reaching down to a 6.1 GHz pseudo-luminosity threshold of ≈1 mJy kpc2for a pulse duty cycle of 2.5%. We searched our data in the Fourier domain for periodic signals incorporating a constant or linearly changing line-of-sight pulsar acceleration. We report the successful detection of the GC magnetar PSR J1745−2900 in our data. Our pulsar searches yielded a nondetection of novel periodic astrophysical emissions above a 6σdetection threshold in harmonic-summed power spectra. We reconcile our nondetection of GC pulsars with inadequate sensitivity to a likely GC pulsar population dominated by millisecond pulsars. Alternatively, close encounters with compact objects in the dense GC environment may scatter pulsars away from the GC. The dense central interstellar medium may also favorably produce magnetars over pulsars. 
    more » « less
  3. The search for extraterrestrial intelligence at radio frequencies has largely been focused on continuous-wave narrowband signals. We demonstrate that broadband pulsed beacons are energetically efficient compared to narrowband beacons over longer operational timescales. Here, we report the first extensive survey searching for such broadband pulsed beacons toward 1883 stars as a part of the Breakthrough Listen’s search for advanced intelligent life. We conducted 233 hr of deep observations across 4–8 GHz using the Robert C. Byrd Green Bank Telescope and searched for three different classes of signals with artificial (or negative) dispersion. We report a detailed search—leveraging a convolutional neural network classifier on high-performance GPUs—deployed for the very first time in a large-scale search for signals from extraterrestrial intelligence. Due to the absence of any signal-of-interest from our survey, we place a constraint on the existence of broadband pulsed beacons in our solar neighborhood: ≲1 in 1000 stars have transmitter power densities ≳10^5 W Hz^−1 repeating ≤500 s at these frequencies. 
    more » « less
  4. A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 10^18 W among 60 million stars and ≥5 × 10^17 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 10^14 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm^−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥10^31 erg s^−1 and burst rate of ≥0.23 burst hr^−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC. 
    more » « less