- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Suri, Sanah (2)
-
Hong, Sanghyun (1)
-
LeVeque, Randall J (1)
-
Lee, Kookjin (1)
-
Rim, Donsub (1)
-
Stern, Ari (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neural networks (NNs) enable precise modeling of complicated geophysical phenomena but can be sensitive to small input changes. In this work, we present a new method for analyzing this instability in NNs. We focus our analysis on adversarial examples, test‐time inputs with carefully crafted human‐imperceptible perturbations that expose the worst‐case instability in a model's predictions. Our stability analysis is based on a low‐rank expansion of NNs on a fixed input, and we apply our analysis to a NN model for tsunami early warning which takes geodetic measurements as the input and forecasts tsunami waveforms. The result is an improved description of local stability that explains adversarial examples generated by a standard gradient‐based algorithm, and allows the generation of other comparable examples. Our analysis can predict whether noise in the geodetic input will produce an unstable output, and identifies a potential approach to filtering the input that enable more robust forecastingmore » « lessFree, publicly-accessible full text available December 1, 2025
-
Stern, Ari; Suri, Sanah (, Journal of Computational Dynamics)
An official website of the United States government
