skip to main content


Search for: All records

Creators/Authors contains: "Surko, C. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. Free, publicly-accessible full text available September 1, 2024
  3. Inviscid spatial Landau damping is studied experimentally for the case of oscillatory motion of a two-dimensional vortex about its elliptical equilibrium in the presence of an applied strain flow. The experiments are performed using electron plasmas in a Penning–Malmberg trap. They exploit the isomorphism between the two-dimensional Euler equations for an ideal fluid and the drift-Poisson equations for the plasma, where plasma density is the analog of vorticity. Perturbed elliptical vortex states are created using [Formula: see text] strain flows, which are generated by applying voltages to electrodes surrounding the plasma. Measurements of spatial Landau damping (also called critical-layer damping) are in agreement with previous studies in the absence of an applied strain, where the damping is due to a resonance between the local fluid motion and the vortex oscillations. Interestingly, the damping rate does not change significantly over a wide range of applied strain rates. This can be accurately predicted from the initial vorticity profile, even though the resonant frequency is reduced substantially due to the applied strain. For higher amplitude perturbations, nonlinear trapping oscillations also exhibit behavior similar to the strain-free case. In principle, higher-order effects of the applied strain, such as separatrix crossing of peripheral vorticity and interactions with harmonics of the fundamental resonance, are expected to change the damping rate. However, this occurs only for conditions that are not realized in the experiments described here. Vortex-in-cell simulations are used to investigate the possible roles of these effects. 
    more » « less
  4. Abstract Annihilation studies have established that positrons bind to most molecules. They also provide measurements of the positron-molecule binding energies, which are found to vary widely and depend upon molecular size and composition. Trends of binding energy with global parameters such as molecular polarizability and dipole moment have been discussed previously. In this paper, the dependence of binding energy on molecular geometry is investigated by studying resonant positron annihilation on selected pairs of isomers. It is found that molecular geometry can play a significant role in determining the binding energies even for isomers with very similar polarizabilities and dipole moments. The possible origins of this dependence are discussed. 
    more » « less
  5. null (Ed.)