- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Sutlive, Joseph (3)
-
Riquimaroux, Hiroshi (2)
-
Chen, Yunfeng (1)
-
Chen, Zi (1)
-
Gou, Kun (1)
-
Guo, Ming (1)
-
Mueller, Rolf (1)
-
Müller, Rolf (1)
-
Xiong, Fengzhu (1)
-
Xiu, Haning (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bats have evolved unique methods of perception to navigate and catch prey using ultrasonic sounds. It has been observed that the greater horseshoe bat (Rhinolophus ferrumequinum) rapidly move their pinna and noseleaf structures in coordination with pulse emission and echo reception during echolocation, with everything occurring on a 100ms time scale. Sensorimotor integration is not uncommon in neural systems but bats provide a unique case for auditory processing coinciding motion in the periphery. We have developed biomimetic robotic models to replicate the dynamic emission and reception elements of bat echolocation; current data have shown these dynamics introduce time-variant effects which encode information to inform object identification and location. We have planned experiments to understand how motor and auditory systems are integrated, which will be done by recording midbrain responses interacting with stimuli. These recordings will consist of field potential measurements taken from the inferior and superior colliculi; we hope this work will provide physiological events associated with sensorimotor integration for echolocation.more » « less
-
Sutlive, Joseph; Riquimaroux, Hiroshi; Müller, Rolf (, The Journal of the Acoustical Society of America)
-
Sutlive, Joseph; Xiu, Haning; Chen, Yunfeng; Gou, Kun; Xiong, Fengzhu; Guo, Ming; Chen, Zi (, Small)Abstract Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.more » « less
An official website of the United States government

Full Text Available