Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Properties of the nuclear equation of state (EoS) can be probed by measuring the dynamical properties of nucleus-nucleus collisions. In this study, we present the directed flow (v1), elliptic flow (v2) and stopping (VarXZ) measured in fixed target Sn+ Sn collisions at 270AMeV with the S'll'RlT Time Projection Chamber. We perform Bayesian analyses in which EoS parameters are varied simultaneously within the Improved Quantum Molecular Dynamics-Skyrme (ImQMD-Sky) transport code to obtain a multivariate correlated constraint. The varied parameters include symmetry energy, S0, and slope of the symmetry energy, L, at saturation density, isoscalar effective mass, m;/mN, isovector effective mass, m/mN and the in-medium cross-section enhancement factor rJ. We find that the flow and VarXZ observables are sensitive to the splitting of proton and neutron effective masses and the in-medium cross-section. Comparisons of ImQMD-Sky predictions to the S'll' RJT data suggest a narrow range of preferred values for m;/mN, m/mN and 1/·more » « lessFree, publicly-accessible full text available June 1, 2025
-
To tackle problems that can not be solved by current digital computers, many systems propose ideas from physics and neuroscience. The CTDS solver introduced by Ercsey-Ravasz and Toroczkai is one of such system. It solves the satisfiability problem by reducing it to a minimization of a time-varying target function. Although the possibility of an efficient electric circuit implementation of the solver has been shown, in terms of physical realizations, the solver has a problem of unbounded variations of the target function parameters. Here we propose a variant of the solver with bounded target function parameters. It includes several possible modifications of the solver in system parameter differences. We also show the basic characteristics of the solver, the upper and lower bounds of the target function parameters.more » « less
-
To tackle problems that can not be solved by current digital computers, many systems propose ideas from physics and neuroscience. The CTDS solver introduced by Ercsey-Ravasz and Toroczkai is one of such system. It solves the satisfiability problem by reducing it to a minimization of a time-varying target function. Although the possibility of an efficient electric circuit implementation of the solver has been shown, in terms of physical realizations, the solver has a problem of unbounded variations of the target function parameters. Here we propose a variant of the solver with bounded target function parameters. It includes several possible modifications of the solver in system parameter differences. We also show the basic characteristics of the solver, the upper and lower bounds of the target function parameters.more » « less