- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001100000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Suzuki, Taiji (2)
-
Ba, Jimmy (1)
-
Erdogdu, Murat A (1)
-
Huang, Furong (1)
-
Li, Jingling (1)
-
Su, Jiahao (1)
-
Sun, Yanchao (1)
-
Wang, Zhichao (1)
-
Wu, Denny (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Globerson, A (1)
-
Hardt, M (1)
-
Levine, S (1)
-
Naumann, T (1)
-
Oh, A (1)
-
Saenko, K (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)We consider the problem of learning a single-index target function f∗ : Rd → R under the spiked covariance data: f∗(x) = σ∗ √ 1 1+θ ⟨x,μ⟩ , x ∼ N(0, Id + θμμ⊤), θ ≍ dβ for β ∈ [0, 1), where the link function σ∗ : R → R is a degree-p polynomial with information exponent k (defined as the lowest degree in the Hermite expansion of σ∗), and it depends on the projection of input x onto the spike (signal) direction μ ∈ Rd. In the proportional asymptotic limit where the number of training examples n and the dimensionality d jointly diverge: n, d → ∞, n/d → ψ ∈ (0,∞), we ask the following question: how large should the spike magnitude θ be, in order for (i) kernel methods, (ii) neural networks optimized by gradient descent, to learn f∗? We show that for kernel ridge regression, β ≥ 1 − 1 p is both sufficient and necessary. Whereas for two-layer neural networks trained with gradient descent, β > 1 − 1 k suffices. Our results demonstrate that both kernel methods and neural networks benefit from low-dimensional structures in the data. Further, since k ≤ p by definition, neural networks can adapt to such structures more effectively.more » « less
-
Li, Jingling; Sun, Yanchao; Su, Jiahao; Suzuki, Taiji; Huang, Furong (, International Conference on Artificial Intelligence and Statistics)
An official website of the United States government

Full Text Available