skip to main content

Search for: All records

Creators/Authors contains: "Swain, Daniel L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is increasing the likelihood of an extreme storm sequence capable of generating severe flooding in California.
  2. Abstract

    Lightning occurring with less than 2.5 mm of rainfall—typically referred to as ‘dry lightning’—is a major source of wildfire ignition in central and northern California. Despite being rare, dry lightning outbreaks have resulted in destructive fires in this region due to the intersection of dense, dry vegetation and a large population living adjacent to fire-prone lands. Since thunderstorms are much less common in this region relative to the interior West, the climatology and drivers of dry lightning have not been widely investigated in central and northern California. Using daily gridded lightning and precipitation observations (1987–2020) in combination with atmospheric reanalyses, we characterize the climatology of dry lightning and the associated meteorological conditions during the warm season (May–October) when wildfire risk is highest. Across the domain, nearly half (∼46%) of all cloud-to-ground lightning flashes occurred as dry lightning during the study period. We find that higher elevations (>2000 m) receive more dry lightning compared to lower elevations (<1000 m) with activity concentrated in July-August. Although local meteorological conditions show substantial spatial variation, we find regionwide enhancements in mid-tropospheric moisture and instability on dry lightning days relative to background climatology. Additionally, surface temperatures, lower-tropospheric dryness, and mid-tropospheric instability are increased acrossmore »the region on dry versus wet lightning days. We also identify widespread dry lightning outbreaks in the historical record, quantify their seasonality and spatial extent, and analyze associated large-scale atmospheric patterns. Three of these four atmospheric patterns are characterized by different configurations of ridging over the continental interior and offshore troughing. Understanding the meteorology of dry lightning across this region can inform forecasting of possible wildfire ignitions and is relevant for assessing changes in dry lightning and wildfire risk in climate projections.

    « less
  3. Post-wildfire extreme rainfall events may more than double over the western United States this century.
  4. Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM 2.5 ) and ground-level ozone. We examine the spatiotemporal characteristics of PM 2.5 /ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM 2.5 /ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM 2.5 /ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change.
  5. Abstract Precipitation extremes will increase in a warming climate, but the response of flood magnitudes to heavier precipitation events is less clear. Historically, there is little evidence for systematic increases in flood magnitude despite observed increases in precipitation extremes. Here we investigate how flood magnitudes change in response to warming, using a large initial-condition ensemble of simulations with a single climate model, coupled to a hydrological model. The model chain was applied to historical (1961–2000) and warmer future (2060–2099) climate conditions for 78 watersheds in hydrological Bavaria, a region comprising the headwater catchments of the Inn, Danube and Main River, thus representing an area of expressed hydrological heterogeneity. For the majority of the catchments, we identify a ‘return interval threshold’ in the relationship between precipitation and flood increases: at return intervals above this threshold, further increases in extreme precipitation frequency and magnitude clearly yield increased flood magnitudes; below the threshold, flood magnitude is modulated by land surface processes. We suggest that this threshold behaviour can reconcile climatological and hydrological perspectives on changing flood risk in a warming climate.
  6. Abstract

    Recent extreme fire seasons in California have prompted utilities such as Pacific Gas and Electric to pre-emptively de-energize portions of the electrical grid during periods of extreme fire weather to reduce the risk of powerline-related fire ignitions. The policy was deployed in 2019, resulting in 12 million person-days of power outages and widespread societal disruption. Retrospective weather and vegetation moisture data highlight hotspots of historical risk across northern California. We estimate an average of 1.6 million person-days of de-energization per year, based on recent historical climate conditions and assuming publicly stated utility de-energization thresholds. We further estimate an additional 70% increase in the population affected by de-energization when vegetation remains abnormally dry later into autumn—suggesting that climate change will likely increase population vulnerable to de-energization. Adaptation efforts to curtail fire risk can be beneficial, but efforts to prepare affected populations, modernize the grid, and refine decision-making surrounding such policies have high potential to reduce the magnitude of negative externalities experienced during the 2019 de-energization events.

  7. Abstract

    California has experienced increasingly severe autumn wildfires over the past several decades, which have exacted a rising human and environmental toll. Recent fire and climate science research has demonstrated a clear link between worsening California wildfires and climate change, mainly though the vegetation‐drying effect of rising temperatures and shifting precipitation seasonality. New work by Luković et al. (2021) explores observed changes in California's autumn precipitation in greater detail, finding that the rainy season has indeed become progressively delayed and that the “sharpness” of California precipitation seasonality has increased. These precipitation shifts have important implications for the region's ecology and wildfire risk, as they increase the degree of temporal overlap between extremely dry vegetation conditions and fire‐promoting downslope winds in late autumn. Both of these observed shifts are consistent with climate model projections for the region's future, suggesting that recent trends may offer an early preview of larger changes to come.