Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics,more »Free, publicly-accessible full text available November 1, 2022
-
Free, publicly-accessible full text available July 1, 2023
-
Free, publicly-accessible full text available September 1, 2022
-
A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experimentmore »
-
A bstract A search for the K + → π + X decay, where X is a long-lived feebly interacting particle, is performed through an interpretation of the K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV /c 2 and 154–260 MeV /c 2 , and lifetimes above 100 ps are considered. The limits set on the branching ratio, BR( K + → π + X ), are competitive with previously reported searches in the first mass range,more »
-
A bstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 10 9 tagged π 0 mesons from K + → π + π 0 ( γ ), searching for the decay of the π 0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4 . 4 × 10 − 9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit onmore »
-
A bstract The NA62 experiment reports an investigation of the $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ mode from a sample of K + decays collected in 2017 at the CERN SPS. The experiment has achieved a single event sensitivity of (0 . 389 ± 0 . 024) × 10 − 10 , corresponding to 2.2 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . Two signal candidates are observed with an expected background of 1.5 events. Combined with the result of amore »