- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Biegas, Kyle_J (2)
-
Cabral, Jessica (2)
-
Kim, Christi_Y (2)
-
Papson, Casey (2)
-
Santamaria, Carolina (2)
-
Siegrist, M_Sloan (2)
-
Swarts, Benjamin_M (2)
-
Agu, Kingsley_C (1)
-
Banahene, Nicholas (1)
-
Gaidhane, Ishani_V (1)
-
Gomard-Henshaw, Kyla (1)
-
Kruskamp, Andrew_D (1)
-
Lee, James_R (1)
-
Lim, Pamelia_N (1)
-
Rothchild, Alissa_C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Santamaria, Carolina; Biegas, Kyle_J; Lim, Pamelia_N; Cabral, Jessica; Kim, Christi_Y; Lee, James_R; Gaidhane, Ishani_V; Papson, Casey; Gomard-Henshaw, Kyla; Rothchild, Alissa_C; et al (, Proceedings of the National Academy of Sciences)Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation. The molecular mechanism by which TDM inhibits phagosome maturation has been elusive. We find that a clickable, photoaffinity TDM probe recapitulates key phenotypes of native TDM in macrophage host cells and binds several host Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins Receptor (SNARE) proteins, including Vesicle Transport through Interaction with t-SNAREs 1B (VTI1B), Syntaxin 8 (STX8), and Vesicle-Associated Membrane Protein 2 (VAMP2). VTI1B and STX8 normally promote endosome fusion by forming a complex with VAMP8. However, in the presence ofMycobacterium tuberculosis, VTI1B and STX8 complex with VAMP2, which in turn decreases VAMP8 binding. VAMP2 acts together with mycolate structure to inhibit phagosome maturation and promotes intracellularM. tuberculosisreplication. Thus one mechanism by which TDM constrains the innate immune response toM. tuberculosisis via noncanonical SNARE complexation.more » « less
An official website of the United States government
