skip to main content

Search for: All records

Creators/Authors contains: "Swenson, Nathan G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background and Aims

    Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico.


    We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016.

    Key Results

    The previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shiftmore »from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time.


    Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.

    « less
  2. Liu, Xiaojuan (Ed.)
  3. Predicting drought responses of individual trees in tropical forests remains challenging, in part because trees experience drought differently depending on their position in spatially heterogeneous environments. Specifically, topography and the competitive environment can influence the severity of water stress experienced by individual trees, leading to individual-level variation in drought impacts. A drought in 2015 in Puerto Rico provided the opportunity to assess how drought response varies with topography and neighborhood crowding in a tropical forest. In this study, we integrated 3 years of annual census data from the El Yunque Chronosequence plots with measurements of functional traits and LiDAR-derived metrics of microsite topography. We fit hierarchical Bayesian models to examine how drought, microtopography, and neighborhood crowding influence individual tree growth and survival, and the role functional traits play in mediating species’ responses to these drivers. We found that while growth was lower during the drought year, drought had no effect on survival, suggesting that these forests are fairly resilient to a single-year drought. However, growth response to drought, as well as average growth and survival, varied with topography: tree growth in valley-like microsites was more negatively affected by drought, and survival was lower on steeper slopes while growth was highermore »in valleys. Neighborhood crowding reduced growth and increased survival, but these effects did not vary between drought/non-drought years. Functional traits provided some insight into mechanisms by which drought and topography affected growth and survival. For example, trees with high specific leaf area grew more slowly on steeper slopes, and high wood density trees were less sensitive to drought. However, the relationships between functional traits and response to drought and topography were weak overall. Species sorting across microtopography may drive observed relationships between average performance, drought response, and topography. Our results suggest that understanding species’ responses to drought requires consideration of the microenvironments in which they grow. Complex interactions between regional climate, topography, and traits underlie individual and species variation in drought response.« less