skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swindlehurst, A. Lee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article investigates block-level interference exploitation (IE) precoding for multiuser multiple-input-single-output (MU-MISO) downlink systems. To overcome the need for symbol-level IE precoding to frequently update the precoding matrix, we propose to jointly optimize all the precoders or transmit signals within a transmission block. The resultant precoders only need to be updated once per block, and while not necessarily constant over all the symbol slots, we refer to the technique as block-level slot-variant IE precoding. Through a careful examination of the optimal structure and the explicit duality inherent in block-level power minimization (PM) and signal-to-interference-plus-noise ratio (SINR) balancing (SB) problems, we discover that the joint optimization can be decomposed into subproblems with smaller variable sizes. As a step further, we propose block-level slot-invariant IE precoding by adding a structural constraint on the slot-variant IE precoding to maintain a constant precoder throughout the block. A novel linear precoder for IE is further presented, and we prove that the proposed slot-variant and slot-invariant IE precoding share an identical solution when the number of symbol slots does not exceed the number of users. Numerical simulations demonstrate that the proposed precoders achieve a significant complexity reduction compared against benchmark schemes, without sacrificing performance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the elements of the noise covariance matrix as unknown random variables that are used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  3. Constructive interference exploited by symbol-level (SL) signal processing is a promising solution for addressing the inherent interference problem in dual-functional radar-communication (DFRC) signal designs. This paper considers an SL-DFRC signal design problem which maximizes the radar performance under communication performance constraints. We exploit the symmetrical non-convexity property of the communication-independent radar sensing metric to develop low- complexity yet efficient algorithms. We first propose a radar-to- DFRC (R2DFRC) algorithm that relies on the non-convexity of the radar sensing metric to find a set of radar-only solutions. Based on these solutions, we further exploit the symmetrical property of the radar sensing metric to efficiently design the DFRC signal. Since the radar sensing metric is independent of the communication channel and data symbols, the set of radar-only solutions can be constructed offline, therefore reducing the computational complexity. We then develop an accelerated R2DFRC algorithm that further reduces the complexity. Finally, we demonstrate the superiority of the proposed algorithms compared to existing methods in terms of both radar sensing and communication performance as well as computational complexity. 
    more » « less
    Free, publicly-accessible full text available June 9, 2025
  4. This paper explores the use of reconfigurable intelligent surfaces (RIS) in mitigating cross-system interference in spectrum sharing and secure wireless applications. Unlike conventional RIS that can only adjust the phase of the incoming signal and essentially reflect all impinging energy, or active RIS, which also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, an absorptive RIS (ARIS) is considered. An ARIS can in principle modify both the phase and modulus of the impinging signal by absorbing a portion of the signal energy, providing a compromise between its conventional and active counterparts in terms of complexity, power consumption, and degrees of freedom (DoFs). We first use a toy example to illustrate the benefit of ARIS, and then we consider three applications: 1) spectral coexistence of radar and communication systems, where a convex optimization problem is formulated to minimize the Frobenius norm of the channel matrix from the communication base station to the radar receiver; 2) spectrum sharing in device-to-device (D2D) communications, where a max-min scheme that maximizes the worst-case signal-to-interference-plus-noise ratio (SINR) among the D2D links is developed and then solved via fractional programming; 3) physical layer security of a downlink communication system, where the secrecy rate is maximized and the resulting nonconvex problem is solved by a fractional programming algorithm together with a sequential convex relaxation procedure. Numerical results are then presented to show the significant benefit of ARIS in these applications. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Free, publicly-accessible full text available July 8, 2025
  6. Electromagnetic wave absorbing material (EWAM) plays an essential role in manufacturing stealth aircraft, which can achieve the electromagnetic stealth (ES) by reducing the strength of the signal reflected back to the radar system. However, the stealth performance is limited by the coating thickness, incident wave angles, and working frequencies. To tackle these limitations, we propose a new intelligent reflecting surface (IRS)-aided ES system where an IRS is deployed at the target to synergize with EWAM for effectively mitigating the echo signal and thus reducing the radar detection probability. Considering the monotonic relationship between the detection probability and the received signal-to-noise-ratio (SNR) at the radar, we formulate an optimization problem that minimizes the SNR under the reflection constraint of each IRS element, and a semi-closed-form solution is derived by using Karush-Kuhn-Tucker (KKT) conditions. Simulation results validate the superiority of the proposed IRS-aided ES system compared to various benchmarks. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  7. A promising approach to deal with the high hardware cost and energy consumption of massive MIMO transmitters is to use low-resolution digital-to-analog converters (DACs) at each antenna element. This leads to a transmission scheme where the transmitted signals are restricted to a finite set of voltage levels. This paper is concerned with the analysis and optimization of a low-cost quantized precoding strategy, referred to as linear-quantized precoding, for a downlink massive MIMO system under Rayleigh fading. In linear-quantized precoding, the signals are first processed by a linear precoding matrix and subsequently quantized component-wise by the DAC. In this paper, we analyze both the signal-to-interference-plus-noise ratio (SINR) and the symbol error probability (SEP) performances of such linear-quantized precoding schemes in an asymptotic framework where the number of transmit antennas and the number of users grow large with a fixed ratio. Our results provide a rigorous justification for the heuristic arguments based on the Bussgang decomposition that are commonly used in prior works. Based on the asymptotic analysis, we further derive the optimal precoder within a class of linear-quantized precoders that includes several popular precoders as special cases. Our numerical results demonstrate the excellent accuracy of the asymptotic analysis for finite systems and the optimality of the derived precoder. 
    more » « less
  8. This paper focuses on designing robust symbol-level precoding (SLP) in an overlay cognitive radio (CR) network, where the primary and secondary networks transmit signals concurrently. When the primary base station (PBS) shares data and perfect channel state information (CSI) with the cognitive base station (CBS), we derive an SLP approach that minimizes the CR transmission power and satisfies symbol-wise Safety Margin (SM) constraints of both primary users (PUs) and cognitive users (CUs). The resulting optimization has a quadratic objective and linear inequality (LI) constraints, which can be solved by standard convex methods. For the case of imperfect CSI from the PBS, we propose robust SLP schemes. First, with a norm-bounded CSI error model to approximate the uncertain channels, we adopt a max-min philosophy to conservatively achieve robust SLP constraints. Second, we use the additive quantization noise model (AQNM) to describe the quantized PBS CSI and employ a stochastic constraint to formulate the problem. Both robust approaches also result in a quadratic objective with LI constraints. Simulation results show that, rather than simply trying to eliminate the network’s cross-interference, the proposed robust SLP schemes enable the primary and secondary networks to aid each other in meeting their quality of service constraints. 
    more » « less
  9. Compared with traditional half-duplex wireless systems, the application of emerging full-duplex (FD) technology can potentially double the system capacity theoretically. However, conventional techniques for suppressing self-interference (SI) adopted in FD systems require exceedingly high power consumption and expensive hardware. In this paper, we consider employing an intelligent reflecting surface (IRS) in the proximity of an FD base station (BS) to mitigate SI for simultaneously receiving data from uplink users and transmitting information to downlink users. The objective considered is to maximize the system weighted sum-rate by jointly optimizing the IRS phase shifts, the BS transmit beamformers, and the transmit power of the uplink users. To visualize the role of the IRS in SI cancellation, we first study a simple scenario with one downlink user and one uplink user. To address the formulated non-convex problem, a low-complexity algorithm based on successive convex approximation is proposed. For the more general case considering multiple downlink and uplink users, an efficient alternating optimization algorithm based on element-wise optimization is proposed. Numerical results demonstrate that the FD system with the proposed schemes can achieve a larger gain over the half-duplex system, and the IRS is able to achieve a balance between suppressing SI and providing beamforming gain. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  10. This paper presents a novel reconfigurable intel-ligent surface (RIS)-based localization approach for mobile user equipment (UE) in a millimeter-wave uplink cellular environment. The proposed approach develops a measurement engine that employs a state-of-the-art carrier-aided code-phase-based navigation receiver and incorporates a passive correlation-based angle-locked loop (ALL) for TOA and AOA estimation. An extended Kalman filter (EKF)-based RIS-aided navigation framework is deployed, providing accurate 3D position and velocity estimates for the mobile UEs utilizing the RIS-based navigation observables, which are then leveraged to optimize the RIS phase profile to maximize the signal-to-noise ratio (SNR) for the various UEs. Finally, the paper demonstrates the accuracy of the navigation solution through extensive Monte Carlo simu-lations that encompass different scenarios involving pedestrians, ground vehicles, and unmanned aerial vehicles (UAVs), These simulations emphasize the utility of our proposed approach in delivering sub-meter and meter-level posltioning accuracies. 
    more » « less