skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swisher, Holly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2026
  2. Free, publicly-accessible full text available July 16, 2026
  3. Free, publicly-accessible full text available December 9, 2025
  4. In 2020, Kang and Park conjectured a "level $$2$$" Alder-type partition inequality which encompasses the second Rogers-Ramanujan Identity. Duncan, Khunger, the fourth author, and Tamura proved Kang and Park's conjecture for all but finitely many cases utilizing a "shift" inequality and conjectured a further, weaker generalization that would extend both Alder's (now proven) as well as Kang and Park's conjecture to general level. Utilizing a modified shift inequality, Inagaki and Tamura have recently proven that the Kang and Park conjecture holds for level $$3$$ in all but finitely many cases. They further conjectured a stronger shift inequality which would imply a general level result for all but finitely many cases. Here, we prove their conjecture for large enough $$n$$, generalize the result for an arbitrary shift, and discuss the implications for Alder-type partition inequalities. 
    more » « less
  5. null (Ed.)