skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Szymanski, Boleslaw Karol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum networks describe communication networks that are based on quantum entanglement. A concurrence percolation theory has been recently developed to determine the required entanglement to enable communication between two distant stations in an arbitrary quantum network. Unfortunately, concurrence percolation has been calculated only for very small networks or large networks without loops. Here, we develop a set of mathematical tools for approximating the concurrence percolation threshold for unprecedented large-scale quantum networks by estimating the path-length distribution, under the assumption that all paths between a given pair of nodes have no overlap. We show that our approximate method agrees closely with analytical results from concurrence percolation theory. The numerical results we present include 2D square lattices of 2002nodes and complex networks of up to 104nodes. The entanglement percolation threshold of a quantum network is a crucial parameter for constructing a real-world communication network based on entanglement, and our method offers a significant speed-up for the intensive computations involved. 
    more » « less