skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Szymanski, Nathan J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 2, 2026
  2. Free, publicly-accessible full text available January 8, 2026
  3. Abstract Rationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over‐stoichiometric rocksalt (ORX) compounds, characterized by their face‐sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over‐stoichiometric rocksalt Li–In–Sn–O (o‐LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated. It is revealed that the spinel‐like phase with unconventional stoichiometry forms as coherent precipitate from the high‐temperature‐stabilized cation‐disordered rocksalt phase upon fast cooling. This process prevents direct phase decomposition and kinetically locks the system in a metastable state with the desired face‐sharing Li configurations. This insight enables us to enhance the ionic conductivity of o‐LISO to be >1 mS cm−1at room temperature through low‐temperature post‐annealing. This work offers insights into the synthesis of ORX materials and highlights important opportunities in this new class of materials. 
    more » « less
    Free, publicly-accessible full text available December 23, 2025