skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taak, Yoon Chan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Strong lensed quasi-stellar objects (QSOs) are valuable probes of the Universe in numerous aspects. Two of these applications, reverberation mapping and measuring time delays for determining cosmological parameters, require the source QSOs to be variable with sufficient amplitude. In this paper, we forecast the number of strong lensed QSOs with sufficient variability to be detected by the Vera C. Rubin Telescope Legacy Survey of Space and Time (LSST). The damped random walk model is employed to model the variability amplitude of lensed QSOs taken from a mock catalogue by Oguri & Marshall (2010). We expect 30–40 per cent of the mock lensed QSO sample, which corresponds to ∼1000, to exhibit variability detectable with LSST. A smaller subsample of 250 lensed QSOs will show larger variability of >0.15 mag for bright lensed images with i < 21 mag, allowing for monitoring with smaller telescopes. We discuss systematic uncertainties in the prediction by considering alternative prescriptions for variability and mock lens catalogue with respect to our fiducial model. Our study shows that a large-scale survey of lensed QSOs can be conducted for reverberation mapping and time delay measurements following up on LSST. 
    more » « less