skip to main content

Search for: All records

Creators/Authors contains: "Tabatabaie, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches. 
    more » « less