Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2023
-
Free, publicly-accessible full text available December 22, 2022
-
Free, publicly-accessible full text available April 1, 2023
-
Free, publicly-accessible full text available October 1, 2022
-
We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries Bn on 12C and 27Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additional kinematic point to a series of previous measurements of Bn on 12C and provide a first measurement on 27Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average laboratory scattering angle for both targets was 7.7∘, and the average Q2 for both targets was 0.024 37 GeV2 (Q=0.1561 GeV). The asymmetries are Bn=−10.68±0.90(stat)±0.57(syst) ppm for 12C and Bn=−12.16±0.58(stat)±0.62(syst) ppmmore »
-
Quasielastic C12(e,e′p) scattering was measured at spacelike 4-momentum transfer squared Q2=8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e,e′p) reactions. These results impose strict constraints on models of color transparency for protons.