Bioelectrochemical systems with denitrifying biocathodes have been of interest for the removal of nitrate in decentralized wastewater treatment applications. Only a few studies have directly focused on this application, but the removal rates have been very low. This study evaluated the operational parameters that affect the nitrate removal of two-chambered microbial fuel cells (MFCs) with a biocathode, particularly, the carbon to nitrogen ratio (C:N) and proton diffusivity across electrode chambers. The results show that proton diffusion across a proton exchange membrane is not a limiting step in nitrogen removal performance. At C:N ratios of 4 and 8, biocathodes with a continuously supplied carbon source at the anode were able to achieve complete nitrogen removal at a rate of 0.97 ± 0.21 and 1.15 ± 0.13 mg N L−1 d−1, respectively. However, as the C:N ratio increased from 4, 8, 16, and 32, the electrode potentials decreased accordingly. Ratio 4 C:N had a cathodic reduction potential of +66.1 ± 5.3 mV vs. SHE and dropped to −78.6 ± 9.8 mV vs. SHE at 32 C:N. The cathode electrode potential can be controlled by way of the carbon concentrations at the anode, which can have major indirect implications on the evolution of cathodic microbial communities that have preference to particular ranges of reduction potentials. The cathodic biofilms in this study were dominated by the phyla Proteobacteria, Acidobacteria, Bacteroidetes and Nitrospirae, which are known to have key denitrifying microorganisms. The genus Stenotrophomonas was found in abundance within the attached cathode biofilm and to a lesser extent in the suspended biomass. Vibrio, Acidobacteria_Gp4, Nitrosomonas, and Candidatus Competibacter were also cultivated in both the suspended and attached biomass. Nitrospira was only found in the attached biofilm. Regardless of operational scheme, nitrogen removal was improved at low C:N ratios, with 8 C:N having the best performance overall. This indicates that higher C:N ratios than were previously explored (>4 C:N) provide sufficient coulombs to facilitate denitrification at the cathode even while the anodic CEs remain low. Reactor design modifications should be considered to fully support robust denitrifying communities, enhancing the overall nitrogen removal for decentralized wastewater treatment applications.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Taha, Kamal (2)
-
Castro, Cynthia J (1)
-
Homouz, Dirar (1)
-
Idriss, Haitham (1)
-
Kenney, Itzé (1)
-
Lee, Sungmun (1)
-
Srivastava, Amit (1)
-
Yeh, Daniel H (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Srivastava, Amit ; Idriss, Haitham ; Taha, Kamal ; Lee, Sungmun ; Homouz, Dirar ( , Frontiers in Molecular Biosciences)DNA polymerase β (pol β ) is a member of the X- family of DNA polymerases that catalyze the distributive addition of nucleoside triphosphates during base excision DNA repair. Previous studies showed that the enzyme was phosphorylated in vitro with PKC at two serines (44 and 55), causing loss of DNA polymerase activity but not DNA binding. In this work, we have investigated the phosphorylation-induced conformational changes in DNA polymerase β in the presence of Mg ions. We report a comprehensive atomic resolution study of wild type and phosphorylated DNA polymerase using molecular dynamics (MD) simulations. The results are examined via novel methods of internal dynamics and energetics analysis to reveal the underlying mechanism of conformational transitions observed in DNA pol β . The results show drastic conformational changes in the structure of DNA polymerase β due to S44 phosphorylation. Phosphorylation-induced conformational changes transform the enzyme from a closed to an open structure. The dynamic cross-correlation shows that phosphorylation enhances the correlated motions between the different domains. Centrality network analysis reveals that the S44 phosphorylation causes structural rearrangements and modulates the information pathway between the Lyase domain and base pair binding domain. Further analysis of our simulations reveals that a critical hydrogen bond (between S44 and E335) disruption and the formation of three additional salt bridges are potential drivers of these conformational changes. In addition, we found that two of these additional salt bridges form in the presence of Mg ions on the active sites of the enzyme. These results agree with our previous study of DNA pol β S44 phosphorylation without Mg ions which predicted the deactivation of DNA pol β . However, the phase space of structural transitions induced by S44 phosphorylation is much richer in the presence of Mg ions.more » « less