skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Tahmasbi Rad, Armin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Peptide nucleic acids (PNAs) have gained considerable attention due to their remarkable potential in gene editing and targeting-based strategies. However, cellular delivery of PNAs remains a challenge in developing their broader therapeutic applications. Here, we investigated a novel complex made of lipid bicelles and PNA-based carriers for the efficient delivery of PNAs. For proof of concept, PNAs targeting microRNA (miR) 210 and 155 were tested. Comprehensive evaluation of positive as well as negative charge-containing bicelles with PNA : lipid ratios of 1 : 100, 1 : 1000, and 1 : 2500 was performed. The negatively charged bicelles with a PNA : lipid molar ratio of 1 : 2500 yielded a discoidal shape with a uniform diameter of ∼30 nm and a bilayer thickness of 5 nm, while the positively charged bicellar system contained irregular vesicles after the incorporation of PNA. Small-angle X-ray scattering (SAXS) analysis was performed to provide insight into how the hydrophobic PNAs interact with bicelles. Further, flow cytometry followed by confocal microscopy analyses substantiate the superior transfection efficiency of bicelles containing dye-conjugated antimiR PNAs. Functional analysis also confirmed miR inhibition by PNA oligomers delivered by bicelles. The nanodiscoidal complex opens a new pathway to deliver PNAs, which, on their own, are a great challenge to be endocytosed into cells. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene‐based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.

     
    more » « less
  4. Abstract

    The authors designed a structurally stable nano‐in‐nano (NANO2) system highly capable of bioimaging via an aggregation‐enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SCnH2n+1)18,n =4–16] encapsulated in discoidal phospholipid bicelles through a one‐pot synthesis. The detailed morphological characterization of NANO2is conducted using cryogenic transmission electron microscopy, small/wide angle X‐ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2is 20–60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near‐infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation‐enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters’ ligands. With the advantages of biocompatibility and high cellular uptake, NANO2is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.

     
    more » « less