skip to main content

Search for: All records

Creators/Authors contains: "Tai, Jung���Shen B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Arising in many branches of physics, Hopf solitons are three-dimensional particle-like field distortions with nontrivial topology described by the Hopf map. Despite their recent discovery in colloids and liquid crystals, the requirement of applied fields or confinement for stability impedes their utility in technological applications. Here we demonstrate stable Hopf solitons in a liquid crystal material without these requirements as a result of enhanced stability by tuning anisotropy of parameters that describe energetic costs of different gradient components in the molecular alignment field. Nevertheless, electric fields allow for inter-transformation of Hopf solitons between different geometric embodiments, as well as for their three-dimensional hopping-like dynamics in response to electric pulses. Numerical modelling reproduces both the equilibrium structure and topology-preserving out-of-equilibrium evolution of the soliton during switching and motions. Our findings may enable myriads of solitonic condensed matter phases and active matter systems, as well as their technological applications.

  2. Starting with Gauss and Kelvin, knots in fields were postulated to behave like particles, but experimentally they were found only as transient features or required complex boundary conditions to exist and could not self-assemble into three-dimensional crystals. We introduce energetically stable, micrometer-sized knots in helical fields of chiral liquid crystals. While spatially localized and freely diffusing in all directions, they resemble colloidal particles and atoms, self-assembling into crystalline lattices with open and closed structures. These knots are robust and topologically distinct from the host medium, though they can be morphed and reconfigured by weak stimuli under conditions such as those in displays. A combination of energy-minimizing numerical modeling and optical imaging uncovers the internal structure and topology of individual helical field knots and the various hierarchical crystalline organizations that they form.
  3. Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals. These topological soliton structures are characterized by Hopf indices, integers corresponding to the numbers of times that closed-loop-like spatial regions (dubbed “preimages”) of two different single orientations of rod-like molecules or magnetization are linked with each other. We show that both dielectric and ferromagnetic response of the studied material systems allow for stabilizing a host of topological solitons with different Hopf indices. The field transformations during such switching are continuous when Hopf indices remain unchanged, even when involving transformations of preimages, but discontinuous otherwise.