skip to main content

Search for: All records

Creators/Authors contains: "Tait, Alexander N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dong, P. ; Kani, J. ; Xie, C. ; Casellas, R. ; Cole, C. ; Li, M. (Ed.)
    Neuromorphic photonics exploit optical device physics for neuron models, and optical interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency and low switching energy applications in artificial intelligence and neuromorphic computing.
  2. Dong, P. ; Kani, J. ; Xie, C. ; Casellas, R. ; Cole, C. ; Li, M. (Ed.)
    Neuromorphic photonics creates processors 1000 × faster than electronics while consuming less energy. We will discuss the role of neuromorphic photonics in optical communications, review existing approaches, and outline the required technologies to evolve this field.
  3. Microwave communications have witnessed an incipient proliferation of multi-antenna and opportunistic technologies in the wake of an ever-growing demand for spectrum resources, while facing increasingly difficult network management over widespread channel interference and heterogeneous wireless broadcasting. Radio frequency (RF) blind source separation (BSS) is a powerful technique for demixing mixtures of unknown signals with minimal assumptions, but relies on frequency dependent RF electronics and prior knowledge of the target frequency band. We propose photonic BSS with unparalleled frequency agility supported by the tremendous bandwidths of photonic channels and devices. Specifically, our approach adopts an RF photonic front-end to process RF signals at various frequency bands within the same array of integrated microring resonators, and implements a novel two-step photonic BSS pipeline to reconstruct source identities from the reduced dimensional statistics of front-end output. We verify the feasibility and robustness of our approach by performing the first proof-of-concept photonic BSS experiments on mixed-over-the-air RF signals across multiple frequency bands. The proposed technique lays the groundwork for further research in interference cancellation, radio communications, and photonic information processing.

  4. Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.
  5. Abstract Microelectronic computers have encountered challenges in meeting all of today’s demands for information processing. Meeting these demands will require the development of unconventional computers employing alternative processing models and new device physics. Neural network models have come to dominate modern machine learning algorithms, and specialized electronic hardware has been developed to implement them more efficiently. A silicon photonic integration industry promises to bring manufacturing ecosystems normally reserved for microelectronics to photonics. Photonic devices have already found simple analog signal processing niches where electronics cannot provide sufficient bandwidth and reconfigurability. In order to solve more complex information processing problems, they will have to adopt a processing model that generalizes and scales. Neuromorphic photonics aims to map physical models of optoelectronic systems to abstract models of neural networks. It represents a new opportunity for machine information processing on sub-nanosecond timescales, with application to mathematical programming, intelligent radio frequency signal processing, and real-time control. The strategy of neuromorphic engineering is to externalize the risk of developing computational theory alongside hardware. The strategy of remaining compatible with silicon photonics externalizes the risk of platform development. In this perspective article, we provide a rationale for a neuromorphic photonics processor, envisioning its architecture and amore »compiler. We also discuss how it can be interfaced with a general purpose computer, i.e. a CPU, as a coprocessor to target specific applications. This paper is intended for a wide audience and provides a roadmap for expanding research in the direction of transforming neuromorphic photonics into a viable and useful candidate for accelerating neuromorphic computing.« less
  6. Integration of active electronics into photonic systems is necessary for large-scale photonic integration. While heterogeneous integration leverages high-performance electronics, a monolithic scheme can coexist by aiding the electronic processing, improving overall efficiency. We report a lateral bipolar junction transistor on a commercial silicon photonics foundry process. We achieved a DC current gain of 10 with a Darlington configuration, and using measured S-parameters for a single BJT, the available AC gain was at least 3dB for signal frequencies up to 1.1 GHz. Our single BJT demonstrated a transimpedance of 3.2mS/μm, which is about 70 times better than existing literature.

  7. Independent component analysis (ICA) is a general-purpose technique for analyzing multi-dimensional data to reveal the underlying hidden factors that are maximally independent from each other. We report the first photonic ICA on mixtures of unknown signals by employing an on-chip microring (MRR) weight bank. The MRR weight bank performs so-called weighted addition (i.e., multiply-accumulate) operations on the received mixtures, and outputs a single reduced-dimensional representation of the signal of interest. We propose a novel ICA algorithm to recover independent components solely based on the statistical information of the weighted addition output, while remaining blind to not only the original sources but also the waveform information of the mixtures. We investigate both channel separability and near-far problems, and our two-channel photonic ICA experiment demonstrates our scheme holds comparable performance with the conventional software-based ICA method. Our numerical simulation validates the fidelity of the proposed approach, and studies noise effects to identify the operating regime of our method. The proposed technique could open new domains for future research in blind source separation, microwave photonics, and on-chip information processing.