Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The adsorption of crotonaldehyde on Cu-Pt alloy surfaces was characterized by density functional theory (DFT). Two surfaces were considered: Cu2Pt/Cu(111) and Cu3Pt/Cu(111). It was determined that the presence of Pt on the surface, even when isolated as single atoms fully surrounded by Cu, provides additional stability for the adsorbates, increasing the magnitude of the adsorption energy by as much as 40 kJ/mol. The preferred bonding on both surfaces is via multiple coordination, with the most stable configuration being a cis arrangement with di-σ bonding of the C=O bond across a Cu–Cu bridge and an additional π bonding to a Pt atom. The fact that Pt significantly affects the adsorption of unsaturated aldehydes such as crotonaldehyde explains why the kinetics of their hydrogenation using single-atom alloy (SAA) catalysts vary with alloy composition, as we previously reported, and brings into question the simple model in which the role of Pt is only to promote the dissociation of H2.more » « lessFree, publicly-accessible full text available March 1, 2024
-
Free, publicly-accessible full text available October 1, 2023