skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Talamas, Elijah J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Applying consistent terminology for morphological traits across different taxa is a highly pertinent task in the study of morphology and evolution. Different terminologies for the same traits can generate bias in phylogeny and prevent correct homology assessments. This situation is exacerbated in the male genitalia of Hymenoptera, and specifically in Ichneumonoidea, in which the terminology is not standardized and has not been fully aligned with the rest of Hymenoptera. In the current contribution, we review the terms used to describe the skeletal features of the male genitalia in Hymenoptera, and provide a list of authors associated with previously used terminology. We propose a unified terminology for the male genitalia that can be utilized across the order and a list of recommended terms. Further, we review and discuss the genital musculature for the superfamily Ichneumonoidea based on previous literature and novel observations and align the terms used for muscles across the literature. 
    more » « less
  2. Abstract The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification. 
    more » « less