skip to main content


Search for: All records

Creators/Authors contains: "Talley, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sketch Mechanix, an NSF-IUSE funded research project, launched a new feature with the Fall 2022 semester: an instructor interface. Sketch Mechanix’s development had previously focused upon converting to an html platform and then expanding problem types. The initial problem that was featured was truss analysis (method of joints). The second problem type was free body diagrams with point loads at any angle. The most recent sketch recognition feature was the addition of applied moments, using a curved arrow. For any of these problem types, Sketch Mechanix features sketch recognition and automatic feedback to students on their free body diagrams through an online homework platform. With this latest innovation, instructors adopting this novel homework system can now input their own problems, view student scores broken down by problem, and adjust assignment due dates. Prior to the launch of this interface, all of these features involved emailing the development team. For instance, the instructor previously had to email the desired problems, their solutions, and points awarded, as well as wait for the developer to email back student scores to be able to see how students were doing. While sketch recognition has long been the key draw to using Sketch Mechanix, the addition of the instructor interface will aid in the project’s sustainability as it nears the end of the grant period. This paper and poster describe the instructor interface, including screen shots, share feedback from instructors who tested the interface in classes, and detail the future of the program. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  2. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  3. It is challenging to effectively educate in large classes with students from a multitude of backgrounds. Many introductory engineering courses in universities have hundreds of students, and some online classes are even larger. Instructors in these circumstances often turn to online homework systems, which help greatly reduce the grading burden; however, they come at the cost of reducing the quality of feedback that students receive. Since online systems typically can only automatically grade multiple choice or numeric answer questions, students predominately do not receive feedback on the critical skill of sketching free-body diagrams (FBD). An online, sketch-recognition based tutoring system called Mechanix requires students to draw free-body diagrams for introductory statics courses in addition to grading their final answers. Students receive feedback about their diagrams that would otherwise be difficult for instructors to provide in large classes. Additionally, Mechanix can grade open-ended truss design problems with an indeterminate number of solutions. Mechanix has been in use for over six semesters at five different universities by over 1000 students to study its effectiveness. Students used Mechanix for one to three homework assignments covering free-body diagrams, static truss analysis, and truss design for an openended problem. Preliminary results suggest the system increases homework engagement and effort for students who are struggling and is as effective as other homework systems for teaching statics. Focus groups showed students enjoyed using Mechanix and that it helped their learning process. 
    more » « less
  4. In online or large in-person course sections, instructors often adopt an online homework tool to alleviate the burden of grading. While these systems can quickly tell students whether they got a problem correct for a multiple-choice or numeric answer, they are unable to provide feedback on students’ free body diagrams. As the process of sketching a free body diagram correctly is a foundational skill to solving engineering problems, the loss of feedback to the students in this area is a detriment to students. To address the need for rapid feedback on students’ free body diagram sketching, the research team developed an online, sketch-recognition system called Mechanix. This system allows students to sketch free body diagrams, including for trusses, and receive instant feedback on their sketches. The sketching feedback is ungraded. After the students have a correct sketch, they are then able to enter in the numeric answers for the problem and submit those for a grade. Thereby, the platform offers the grading convenience of other online homework systems but also helps the students develop their free body diagram sketching skills. To assess the efficacy of this experimental system, standard concept inventories were administered pre- and post-semester for both experimental and control groups. The unfamiliarity or difficulty of some advanced problems in the Statics Concept Inventory, however, appeared to discourage students, and many would stop putting in any effort after a few problems that were especially challenging to solve. This effect was especially pronounced with the Construction majors versus the Mechanical Engineering majors in the test group. To address this tendency and therefore collect more complete pre- and post-semester concept inventory data, the research group worked on reordering the Statics Concept Inventory questions from more familiar to more challenging, based upon the past performance of the initial students taking the survey. This paper describes the process and results of the effort to reorder this instrument in order to increase Construction student participation and, therefore, the researchers’ ability to measure the impact of the Mechanix system. 
    more » « less
  5. It is challenging to effectively educate in large classes with students from a multitude of backgrounds. Many introductory engineering courses in universities have hundreds of students, and some online classes are even larger. Instructors in these circumstances often turn to online homework systems, which help greatly reduce the grading burden; however, they come at the cost of reducing the quality of feedback that students receive. Since online systems typically can only automatically grade multiple choice or numeric answer questions, students predominately do not receive feedback on the critical skill of sketching free-body diagrams (FBD). An online, sketch-recognition based tutoring system called Mechanix requires students to draw free-body diagrams for introductory statics courses in addition to grading their final answers. Students receive feedback about their diagrams that would otherwise be difficult for instructors to provide in large classes. Additionally, Mechanix can grade open-ended truss design problems with an indeterminate number of solutions. Mechanix has been in use for over six semesters at five different universities by over 1000 students to study its effectiveness. Students used Mechanix for one to three homework assignments covering free-body diagrams, static truss analysis, and truss design for an open-ended problem. Preliminary results suggest the system increases homework engagement and effort for students who are struggling and is as effective as other homework systems for teaching statics. Focus groups showed students enjoyed using Mechanix and that it helped their learning process. 
    more » « less
  6. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less
  7. Large class sizes in engineering programs often prevent instructors from providing detailed and meaningful feedback to students on their homework problems. While the literature shows that frequent and immediate formative feedback has several benefits in terms of knowledge gain and academic motivation, several instructors struggle to provide any feedback. Motivated by this inability, a sketch-based virtual tutoring system, named Mechanix, has been developed and implemented. Mechanix lets the students to sketch their freebody diagram on a virtual interface and the process involved is very close to using a pencil and paper. The system provides real-time feedback on the accuracy of their Freebody diagrams and the solution to the problem. This paper reports the implementation of Mechanix at two large public universities in the United States – Georgia Institute of Technology and Texas State University. Mechanix is used to solve specific assignments from each school that involve the use of freebody diagrams. Pre- and post- concept inventories are used to measure the improvements in the conceptual understanding of the students. The results show that students who solve their homework using Mechanix outperform their peers who do not in one school, whereas the results are similar across the two groups in the second school. The evaluation of the concept inventories shows that the students who used Mechanix has the same level of improvement in their conceptual knowledge compared to the control group. 
    more » « less
  8. The structure of a series of lanthanide iron cobalt perovskite oxides, R (Fe 0.5 Co 0.5 )O 3 ( R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å 3 to 220.376(9) Å 3 , respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “ a ” increases as the ionic radius r ( R 3+ ) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ , and ω , which represent rotations of an octahedron about the pseudocubic perovskite [110] p , [001] p , and [111] p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° to 15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r ( R 3+ ) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R (Fe 0.5 Co 0.5 )O 3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe 0.5 Co 0.5 )O 3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R (Fe 0.5 Co 0.5 )O 3 samples were submitted to the Powder Diffraction File. 
    more » « less