- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Shaochen (3)
-
Tam, Trevor (3)
-
Schimelman, Jacob (2)
-
Tang, Min (2)
-
Tian, Jing (2)
-
Wan, Xueyi (2)
-
Wang, Pengrui (2)
-
Agrawal, Kriti (1)
-
Berry, David (1)
-
Bhargava, Shruti (1)
-
Chen, Luwen (1)
-
Cravatt, Benjamin F. (1)
-
Dang, Jason (1)
-
Dixit, Deobrat (1)
-
Gimple, Ryan C. (1)
-
He, Frank (1)
-
Jing, Hui (1)
-
Kidwell, Reilly L. (1)
-
Lee, Derrick (1)
-
Lorenzini, Michael H. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Pengrui; Berry, David; Moran, Amy; He, Frank; Tam, Trevor; Chen, Luwen; Chen, Shaochen (, Advanced Healthcare Materials)Abstract Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin‐based hydrogels, have demonstrated great potential in regulating GF release. While the retention effects of various concentrations and molecular weights of heparin have been investigated, the role of geometry is unknown. In this work, 3D printing is used to fabricate GF‐embedded heparin‐based hydrogels with arbitrarily complex geometry (i.e., teabag, flower shapes). Simplified cylindrical core–shell structures with varied shell thickness are printed, and the rates of GF release are measured over the course of 28 days. Increasing the shell layers' thickness decreases the rate of GF release. Additionally, a mathematical model is developed, which is found capable of accurately predicting GF release kinetics in hydrogels with shell layers greater than 0.5 mm thick (R2> 0.96). Finally, the sequential release is demonstrated by printing two GFs in alternating radial layers. By switching the spatial order, the delivery sequence of the GFs can be modulated. This study demonstrates how 3D printing can be utilized to fabricate user‐defined structures with unique geometry in order to control the rate of GF release in hydrogels.more » « less
-
Tang, Min; Tiwari, Shashi Kant; Agrawal, Kriti; Tan, Matthew; Dang, Jason; Tam, Trevor; Tian, Jing; Wan, Xueyi; Schimelman, Jacob; You, Shangting; et al (, Small)Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri‐regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient‐derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species‐matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three‐dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient‐specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds.more » « less
An official website of the United States government
