skip to main content

Search for: All records

Creators/Authors contains: "Tan, Brent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Galaxies comprise intricate networks of interdependent processes which together govern their evolution. Central among these are the multiplicity of feedback channels, which remain incompletely understood. One outstanding problem is the understanding and modelling of the multiphase nature of galactic winds, which play a crucial role in galaxy formation and evolution. We present the results of three-dimensional magnetohydrodynamical simulations of tall–box interstellar medium (ISM) patches with clustered supernova-driven outflows. Dynamical fragmentation of the ISM during superbubble breakout seeds the resulting hot outflow with a population of cool clouds. We focus on analyzing and modelling the origin and properties of these clouds. Their presence induces large-scale turbulence, which, in turn, leads to complex cloud morphologies. Cloud sizes are well described by a power-law distribution and mass growth rates can be modelled using turbulent radiative mixing layer theory. Turbulence provides significant pressure support in the clouds, while magnetic fields only play a minor role. We conclude that many of the physical insights and analytic scalings derived from idealized small-scale simulations of turbulent radiative mixing layers and cloud–wind interactions are directly translatable and applicable to these larger scale cloud populations. This opens the door to developing effective subgrid recipes for their inclusion in global-scale galaxy models where they are unresolved.

    more » « less

    Understanding the survival, growth, and dynamics of cold gas is fundamental to galaxy formation. While there has been a plethora of work on ‘wind tunnel’ simulations that study such cold gas in winds, the infall of this gas under gravity is at least equally important, and fundamentally different since cold gas can never entrain. Instead, velocity shear increases and remains unrelenting. If these clouds are growing, they can experience a drag force due to the accretion of low-momentum gas, which dominates over ram pressure drag. This leads to subvirial terminal velocities, in line with observations. We develop simple analytic theory and predictions based on turbulent radiative mixing layers. We test these scalings in 3D hydrodynamic simulations, both for an artificial constant background and a more realistic stratified background. We find that the survival criterion for infalling gas is more stringent than in a wind, requiring that clouds grow faster than they are destroyed ($t_{\rm grow} \lt 4\, t_{\rm cc}$). This can be translated to a critical pressure, which for Milky Way-like conditions is $P \sim 3000 \, {k}_\mathrm{ B} \, {\rm K}\, {\rm cm}^{-3}$. Cold gas that forms via linear thermal instability (tcool/tff < 1) in planar geometry meets the survival threshold. In stratified environments, larger clouds need only survive infall until cooling becomes effective. We discuss applications to high-velocity clouds and filaments in galaxy clusters.

    more » « less