skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tan, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. Cache-based side channels are becoming an important attack vector through which secret information can be leaked to malicious parties. implementations and Previous work on cache-based side channel detection, however, suffers from the code coverage problem or does not provide diagnostic information that is crucial for applying mitigation techniques to vulnerable software. We propose CaSym, a cache-aware symbolic execution to identify and report precise information about where side channels occur in an input program. Compared with existing work, CaSym provides several unique features: (1) CaSym enables verification against various attack models and cache models, (2) unlike many symbolic-execution systems for bug finding, CaSym verifies all program execution paths in a sound way, (3) CaSym uses two novel abstract cache models that provide good balance between analysis scalability and precision, and (4) CaSym provides sufficient information on where and how to mitigate the identified side channels through techniques including preloading and pinning. Evaluation on a set of crypto and database benchmarks shows that CaSym is effective at identifying and mitigating side channels, with reasonable efficiency. 
    more » « less