skip to main content


Search for: All records

Creators/Authors contains: "Tan, Jun Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 21, 2025
  2. Free, publicly-accessible full text available January 21, 2025
  3. The precise spatiotemporal control and manipulation of fluid dynamics on a small scale granted by lab-on-a-chip devices provide a new biomedical research realm as a substitute for in vivo studies of host–pathogen interactions. While there has been a rise in the use of various medical devices/implants for human use, the applicability of microfluidic models that integrate such functional biomaterials is currently limited. Here, we introduced a novel dental implant-on-a-chip model to better understand host–material–pathogen interactions in the context of peri-implant diseases. The implant-on-a-chip integrates gingival cells with relevant biomaterials – keratinocytes with dental resin and fibroblasts with titanium while maintaining a spatially separated co-culture. To enable this co-culture, the implant-on-a-chip's core structure necessitates closely spaced, tall microtrenches. Thus, an SU-8 master mold with a high aspect-ratio pillar array was created by employing a unique backside UV exposure with a selective optical filter. With this model, we successfully replicated the morphology of keratinocytes and fibroblasts in the vicinity of dental implant biomaterials. Furthermore, we demonstrated how photobiomodulation therapy might be used to protect the epithelial layer from recurrent bacterial challenges (∼3.5-fold reduction in cellular damage vs. control). Overall, our dental implant-on-a-chip approach proposes a new microfluidic model for multiplexed host–material–pathogen investigations and the evaluation of novel treatment strategies for infectious diseases. 
    more » « less
  4. Microneedles are highly sought after for medicinal and cosmetic applications. However, the current manufacturing process for microneedles remains complicated, hindering its applicability to a broader variety of applications. As diffraction lithography has been recently reported as a simple method for fabricating solid microneedles, this paper presents the experimental validation of the use of ultraviolet light diffraction to control the liquid-to-solid transition of photosensitive resin to define the microneedle shape. The shapes of the resultant microneedles were investigated utilizing the primary experimental parameters including the photopattern size, ultraviolet light intensity, and the exposure time. Our fabrication results indicated that the fabricated microneedles became taller and larger in general when the experimental parameters were increased. Additionally, our investigation revealed four unique crosslinked resin morphologies during the first growth of the microneedle: microlens, first harmonic, first bell-tip, and second harmonic shapes. Additionally, by tilting the light exposure direction, a novel inclined microneedle array was fabricated for the first time. The fabricated microneedles were characterized with skin insertion and force-displacement tests. This experimental study enables the shapes and mechanical properties of the microneedles to be predicted in advance for mass production and wide practical use for biomedical or cosmetic applications. 
    more » « less
  5. Hollow microneedles are extremely attractive to drug delivery domains with high demands from clinics and industry. However, its complicated fabrication processes have impeded its wide adoption. This paper presents a simple one-step fabrication method for hollow microneedles based on diffraction UV lithography and solid-liquid light propagation. The fabrication process utilizes bottom-up exposure of a liquid photosensitive resin through photomask patterns comprising a plurality of apertures. Hollow microneedles with various heights were fabricated in a range of 400 µm to 600 µm from a few minutes of UV exposure. The fabricated hollow microneedles were characterized with force-displacement tests showing a good tip strength of 0.35 N per single unit. A hollow fluidic test on a pig cadaver skin showed great potential for drug delivery. Also, batch fabrication with multiple height microneedles on a single substrate has demonstrated compatibility with the manufacturing process. 
    more » « less
  6. null (Ed.)