- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tan, Kemin (2)
-
Alcala, Ashley (1)
-
Holmstrom, Erik (1)
-
Kim, Youngchang (1)
-
Kuhn, Misty L. (1)
-
Liu, Yu (1)
-
Luna, Oscar (1)
-
Maltseva, Natalia (1)
-
Mulligan, Rory (1)
-
Nesbitt, David J (1)
-
Nguyen, Karen (1)
-
Ramirez, Guadalupe (1)
-
Solis, Allan (1)
-
Sousa, Rui (1)
-
Stagno, Jason R (1)
-
Vazquez, Daniel (1)
-
Wang, Yun-Xing (1)
-
Ward, Michael (1)
-
Yu, Ping (1)
-
Zhou, Min (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alcala, Ashley; Ramirez, Guadalupe; Solis, Allan; Kim, Youngchang; Tan, Kemin; Luna, Oscar; Nguyen, Karen; Vazquez, Daniel; Ward, Michael; Zhou, Min; et al (, Protein Science)Abstract Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid‐mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized threeVibrioCAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio choleraeandVibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that theV. choleraeandV. vulnificusCATs belong to the Type B class and theA. fisheriCAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation inVibrioand other species.more » « less
An official website of the United States government
