Precipitates have recently been found to significantly enhance the mechanical quality factor in piezoelectric ceramics. Such a piezoelectric hardening effect was attributed to strong interactions between ferroelectric domains and precipitates. In the present work, the response of domains to applied electric fields is observed in situ via transmission electron microscopy in aged (Ba, Ca)TiO3 ceramics with precipitates to reveal the underlying mechanism of this phenomenon. Ferroelectric domains in the Ba-rich matrix grain are observed to be more concentrated near non-polar Ca-rich precipitates. With increasing applied voltage, domains separate from precipitates merge together first, while those near precipitates persist to higher voltages. During ramping down, domains nucleate from precipitates. These direct observations confirm the strong interactions between ferroelectric domains and precipitates in piezoelectric ceramics.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 20, 2025