- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Jena, Debdeep (2)
-
Tanen, Nicholas (2)
-
Asel, Thaddeus_J (1)
-
Chang, Celesta_S (1)
-
Koksal, Okan (1)
-
McCandless, Jonathan (1)
-
Mou, Shin (1)
-
Muller, David_A (1)
-
Peelaers, Hartwin (1)
-
Protasenko, Vladimir (1)
-
Rana, Farhan (1)
-
Singh, Arjan (1)
-
Xing, Huili (Grace) (1)
-
Xing, Huili_Grace (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chang, Celesta_S; Tanen, Nicholas; Protasenko, Vladimir; Asel, Thaddeus_J; Mou, Shin; Xing, Huili_Grace; Jena, Debdeep; Muller, David_A (, APL Materials)β-Ga2O3 is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy, we find the thermodynamically unstable γ-phase is a ubiquitous structural defect in both β-(AlxGa1−x)2O3 films and doped β-Ga2O3 films grown by molecular beam epitaxy. For undoped β-(AlxGa1−x)2O3 films, we observe γ-phase inclusions between nucleating islands of the β-phase at lower growth temperatures (∼500–600 °C). In doped β-Ga2O3, a thin layer of the γ-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the γ-phase layer was most strongly correlated with the growth temperature, peaking at about 600 °C. Ga interstitials are observed in the β-phase, especially near the interface with the γ-phase. By imaging the same region of the surface of a Sn-doped β-(AlxGa1−x)2O3 after ex situ heating up to 400 °C, a γ-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the β-phase. This suggests that the diffusion of Ga interstitials toward the surface is likely the mechanism for growth of the surface γ-phase and more generally that the more-open γ-phase may offer diffusion pathways to be a kinetically favored and early forming phase in the growth of Ga2O3. However, more modeling and simulation of the γ-phase and the interstitials are needed to understand the energetics and kinetics, the impact on electronic properties, and how to control them.more » « less
An official website of the United States government
