skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tang, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls and proxy servers) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper, we study a new VM flow migration problem for dynamic VNF-enabled cloud data centers (VDCs). The goal is to migrate the VM flows in the dynamic VDCs to minimize the total network traffic while load-balancing VNFs with limited processing capabilities. We refer to the problem as FMDV: flow migration in dynamic VDCs. We propose an optimal and efficient minimum cost flow-based flow migration algorithm and two benefit-based efficient heuristic algorithms to solve the FMDV. Via extensive simulations, we show that our algorithms are effective in mitigating dynamic cloud traffic while achieving load balance among VNFs. In particular, all our algorithms reduce dynamic network traffic in all cases and our optimal algorithm always achieves the best traffic-mitigation effect, reducing the network traffic by up to 28% compared to the case without flow migration. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)