skip to main content


Search for: All records

Creators/Authors contains: "Tang, Bofeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions.

     
    more » « less
  2. Abstract Electron beams that are commonly observed in the corona were discovered to be associated with solar flares. These “coronal” electron beams are found ≥300 Mm above the acceleration region and have velocities ranging from 0.1 c up to 0.6 c . However, the mechanism for producing these beams remains unclear. In this paper, we use kinetic transport theory to investigate how isotropic suprathermal energetic electrons escaping from the acceleration region of flares are transported upwardly along the magnetic field lines of flares to develop coronal electron beams. We find that magnetic focusing can suppress the diffusion of Coulomb collisions and background turbulence and sharply collimate the suprathermal electron distribution into beams with the observed velocity within the observed distance. A higher bulk velocity is produced if energetic electrons have harder energy spectra or travel along a more rapidly expanding coronal magnetic field. By modeling the observed velocity and location distributions of coronal electron beams, we predict that the temperature of acceleration regions ranges from 5 × 10 6 to 2 × 10 7 K. Our model also indicates that the acceleration region may have a boundary where the temperature abruptly decreases so that the electron beam velocity can become more than triple (even up to 10 times) the background thermal velocity and produce the coronal type III radio bursts. 
    more » « less
  3. Abstract Observations of Type III radio bursts discovered that electron beams with power-law energy spectra are commonly produced during solar flares. The locations of these electron beams are ~ 300 Mm above the particle acceleration region of the photosphere, and the velocities range from 3 to 10 times the local background electron thermal velocity. However, the mechanism that can commonly produce electron beams during the propagation of energetic electrons with power-law energy spectra in the corona remains unclear. In this paper, using kinetic transport theory, we find for the first time that the magnetic focusing effect governs the formation of electron beams over the observational desired distance in the corona. The magnetic focusing effect can sharply increase the bulk velocity of energetic electrons to the observed electron beam velocity within 0.4 solar radii (300 Mm) as they escape from the acceleration region and propagate upward along magnetic field lines. In more rapidly decreasing magnetic fields, energetic electrons with a harder power-law energy spectrum can generate a higher bulk velocity, producing type III radio bursts at a location much closer to the acceleration region. During propagation, the spectral index of the energetic electrons is unchanged. 
    more » « less
  4. Abstract The electron VDF in the solar wind consists of a Maxwellian core, a suprathermal halo, a field-aligned component strahl, and an energetic superhalo that deviates from the equilibrium. Whistler wave turbulence is thought to resonantly scatter the observed electron velocity distribution. Wave–particle interactions that contribute to Whistler wave turbulence are introduced into a Fokker–Planck kinetic transport equation that describes the interaction between the suprathermal electrons and the Whistler waves. A recent numerical approach for solving the Fokker–Planck kinetic transport equation has been extended to include a full diffusion tensor. Application of the extended numerical approach to the transport of solar wind suprathermal electrons influenced by Whistler wave turbulence is presented. Comparison and analysis of the numerical results with observations and diagonal-only model results are made. The off-diagonal terms in the diffusion tensor act to depress effects caused by the diagonal terms. The role of the diffusion coefficient on the electron heat flux is discussed. 
    more » « less